Analysis 1

Abgabetermin: Montag, 12.05.2025, 12:00

Aufgabe 20 ist eine Präsenzaufgabe und braucht nicht zur Korrektur eingereicht zu werden.

Aufgabe 17: Sei M ein Menge und für $A,B\subseteq M$ definieren wir die symmetrische Differenz als

$$A \triangle B := (A \cup B) \setminus (A \cap B)$$
.

- (a) Zeige, $(\mathcal{P}(M), \triangle)$ ist eine abelsche Gruppe.
- (b) Ist $\mathcal{P}(M)$ mit \triangle als Addition und \cap als Multiplikation ein Körper? Zeige alle Axiome, die erfüllt sind. Inwiefern hängt die Antwort von der Menge M ab?

Aufgabe 18: Sei K ein Körper und $x \in K$ mit $x^2 = 1$. Zeige, dann gilt $x \in \{-1, 1\}$.

Aufgabe 19: Überprüfe für die folgenden Relationen zwischen \mathbb{N} und \mathbb{N} jeweils, ob sie reflexiv, antisymmetrisch oder transitiv sind. Welche der Relationen ist eine Ordnungsrelation? Ist diese dann ggf. auch eine Totalordnung?

- (a) $R := \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x \text{ teilt } y\}.$
- (b) $R := \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid T(x) \subseteq T(y)\}$, wobei T(n) die Menge der Primteiler von n ist.

Aufgabe 20: Sei K ein angeordneter Köper, $x,y \in K$ mit $0 \le x,y$ und $0 < n \in \mathbb{N}$. Zeige, genau dann gilt x < y, wenn $x^n < y^n$ gilt.