Analysis 1

Abgabetermin: Montag, 26.05.2025, 12:00

Aufgabe 28 ist eine Präsenzaufgabe und braucht nicht zur Korrektur eingereicht zu werden.

Aufgabe 25: Untersuche die folgenden Folgen auf Konvergenz und berechne gegebenenfalls den Grenzwert:

(a)
$$(a_n)_{n\geq 1}$$
 mit $a_n=n^2\cdot \left(\frac{1}{n}-\frac{1}{n+2}\right)$.

(b)
$$(a_n)_{n\geq 2}$$
 mit $a_n=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\ldots\cdot\left(1-\frac{1}{n}\right)$.

(c)
$$(a_n)_{n\geq 1}$$
 mit $a_n = \frac{2}{2n!+n^2+5}$

(d)
$$(a_n)_{n\in\mathbb{N}}$$
 mit $a_0=3$ und $a_{n+1}=\frac{7+3\cdot a_n}{3+a_n}$ für $n\in\mathbb{N}$.

Aufgabe 26: Es seien $s,S\in\mathbb{R}_{>0}$ zwei positive reelle Zahlen und $(\mathfrak{a}_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen mit $0< s<\mathfrak{a}_n< S$ für alle $n\in\mathbb{N}$. Zeige,

$$\lim_{n\to\infty}\sqrt[n]{a_n}=1.$$

Ist die Aussage auch noch richtig mit s = 0?

Hinweis: betrachte zunächst den Fall, dass die Folge konstant ist.

Aufgabe 27: Ist $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} und $\sigma:\mathbb{N}\longrightarrow\mathbb{N}$ bijektiv, so nennen wir die Folge

$$(\alpha_{\sigma(n)})_{n\in \mathbb{N}} = (\alpha_{\sigma(0)}, \alpha_{\sigma(1)}, \alpha_{\sigma(2)}, \alpha_{\sigma(3)}, \ldots)$$

eine Umordnung von $(a_n)_{n\in\mathbb{N}}$. Beweise die folgenden beiden Aussagen:

- (a) Ist $\lim_{n\to\infty} a_n = a$, so konvergiert jede Teilfolge von $(a_n)_{n\in\mathbb{N}}$ gegen a.
- (b) Ist $\lim_{n\to\infty} a_n = a$, so konvergiert jede Umordnung von $(a_n)_{n\in\mathbb{N}}$ gegen a.

Aufgabe 28: Bestimme für folgende Reihen, ob sie konvergent, absolut konvergent oder divergent sind:

(a)
$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{\sqrt{n}}$$
.

(c)
$$\sum_{n=1}^{\infty} \left(\frac{1+n^2}{3+n^4} \right)^6$$
.

(b)
$$\sum_{n=1}^{\infty} n^n$$
.

(d)
$$\sum_{n=0}^{\infty} \frac{3^n}{3 \cdot n!}.$$