Analysis 2 / Mathematik für Physiker 3

Abgabetermin: Montag, 26.06.2023, 12:00

Aufgabe 23: Sei $Q \subseteq \mathbb{R}^n$ ein Quader. Wir nennen eine beschränkte Funktion $f: Q \longrightarrow \mathbb{R}$ eine Treppenfunktion, wenn es eine Zerlegung Z von Q gibt, so dass f im Inneren jedes Teilquaders von Z konstant ist, und wir nennen die Zerlegung Z dann zu f passend.

a. Zeige, jede Treppenfunktion $f:Q\longrightarrow \mathbb{R}$ ist Riemann-integrierbar mit

$$\int_{Q} f(x) dx = \sum_{P \in TQ(Z)} c_{P} \cdot V(P),$$

wenn Z eine zu f passende Zerlegung ist und c_P der konstante Wert ist, den f auf dem Quader P annimmt.

b. Zeige, ist $(f_m)_{m\in\mathbb{N}}$ eine Folge von Treppenfunktionen auf Q, die auf Q gleichmäßig gegen eine Funktion $f:Q\longrightarrow\mathbb{R}$ konvergiert, dann ist auch f Riemannintegrierbar und es gilt

$$\int_{Q} f(x) dx = \lim_{m \to \infty} \int_{Q} f_{m}(x) dx.$$

Aufgabe 24: Seien $a,b \in \mathbb{R}^n$ mit a < b und $f,g : [a,b] \longrightarrow \mathbb{R}$ seien beschränkt und fast überall gleich, d.h. es gibt eine Nullmenge N, so dass f(x) = g(x) für alle $x \in [a,b] \setminus N$.

- a. Ist N abgeschlossen in [a,b] und f integrierbar, so ist auch g integrierbar.
- b. Sind f und g auf [a, b] integrierbar, so gilt

$$\int_{[a,b]} f(x) dx = \int_{[a,b]} g(x) dx.$$

Aufgabe 25: Zeige, dass jede Hyperebene im \mathbb{R}^n eine Nullmenge ist.

Präsenzaufgabe 15: Zeige, dass die Kugeloberfläche $K \subset \mathbb{R}^3$, gegeben durch

$$K = \{(x, y, z)^t \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

eine Jordan-Nullmenge ist.