Analysis 2 / Mathematik für Physiker 3

Abgabetermin: Montag, 24.07.2023, 12:00

Aufgabe 35:

a. Sei $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ lokal Lipschitz-stetig mit $\langle x, f(x) \rangle \leq 0$ für alle $x \in \mathbb{R}^n$. Zeige, ist $x: I \longrightarrow \mathbb{R}^n$ eine Lösung der Differentialgleichung $\dot{x} = f(x)$ mit $0 \in I$, dann ist die Abbildung

$$I \longrightarrow \mathbb{R} : t \mapsto ||x(t)||_2$$

monoton fallend.

b. Finde ein Beispiel für eine nicht lokal Lipschitz-stetige Abbildung f, so dass das Anfangswertproblem $\dot{x}=f(t,x)$ mit $x(0)=\eta$ für jeden Anfangswert η eine eindeutige globale Lösung besitzt.

Aufgabe 36: Sei $A: I \longrightarrow Mat_n(\mathbb{R})$ stetig, I ein offenes Intervall und sei $B \in Gl_n(\mathbb{R})$. Zeige, $X: I \longrightarrow Gl_n(\mathbb{R})$ ist genau dann ein Fundamentalsytem von $\dot{x} = A(t) \circ x$, wenn

$$I \longrightarrow Gl_n(\mathbb{R}) : t \mapsto B \circ X(t)$$

ein Fundamentalsystem von $\dot{x} = BA(t)B^{-1} \circ x$ ist.

Präsenzaufgabe 19: Gegeben seien die Abbildung $b: \mathbb{R} \longrightarrow \mathbb{R}^3: t \mapsto (0,0,e^t)^t$ und die Matrix

$$A = \begin{pmatrix} 2 & -2 & 0 \\ 4 & -2 & 0 \\ 3 & -1 & 1 \end{pmatrix} \in Gl_3(\mathbb{R}).$$

a. Zeige, die folgende Abbildung ist ein Fundamentalsystem von $\dot{x}=Ax$

$$X:\mathbb{R} \longrightarrow Gl_3(\mathbb{R}): t \mapsto \begin{pmatrix} 0 & cos(2t) & sin(2t) \\ 0 & cos(2t) + sin(2t) & -cos(2t) + sin(2t) \\ e^t & sin(2t) & -cos(2t) \end{pmatrix}.$$

b. Löse das Anfangswertproblem $\dot{x} = Ax + b(t)$ mit $x(\pi/2) = (-1, 1, 1)^{t}$.

Präsenzaufgabe 20:

a. Bestimme die allgemeine Lösung der Differentialgleichung

$$\dot{x} + cos(t) \cdot x = \frac{sin(2t)}{2}$$

auf dem Intervall $I = (0, \pi)$.

b. Bestimme die allgemeine Lösung der Differentialgleichung

$$x^{(4)}(t) - 2 \cdot \ddot{x}(t) + x(t) = e^{t}.$$