indea matemáticas

Tropical Resultants for Curves

Luis Felipe Tabera Alonso

Barcelona, 04-Sep-2008

Why Resultants?

- Resultants are classical powerful elimination tools
- Related to tropical elimination
- Needed in the context of geometric construction to codify intersection of curves

Notation

- \mathbb{K} is an algebraically closed field of arbitrary characteristic provided by a non trivial valuation $v: \mathbb{K}^{*} \rightarrow \mathbb{T} \subseteq \mathbb{R}$.
- A valuation v is an homomorphism

$$
v: \mathbb{K}^{*} \longrightarrow \mathbb{T}
$$

from the multiplicative group \mathbb{K}^{*} onto an ordered abelian group such that, if $a+b \neq 0$

$$
v(a+b) \geq \min \{v(a), v(b)\}
$$

- R is the valuation ring of \mathbb{K} with maximal ideal m.

$$
\begin{aligned}
& R=\left\{x \in \mathbb{K}^{*} \mid v(x) \geq 0\right\} \cup\{0\} \\
& m=\left\{x \in \mathbb{K}^{*} \mid v(x)>0\right\} \cup\{0\}
\end{aligned}
$$

Notation

- k denotes the residual field with respect to the valuation; $k=R / m$.
- Depending on the characteristics of \mathbb{K} and k we will distinguish three cases.
- $\operatorname{char}(\mathbb{K})=\operatorname{char}(k)=0$, the equicharacteristic zero case. This is the most common to develop tropical geometry.
Example: The Puiseux series $\mathbb{C}\{t\}$ Residual field $\mathbb{C} \subseteq \mathbb{C}\{t\}$
- $\operatorname{char}(\mathbb{K})=\operatorname{char}(k)=p>0$, the equicharacteristic p case. Example: The algebraic closure of $\mathbb{F}_{p}(t)$ of rational functions in one variable.

$$
v(t)=1
$$

Residual field $\overline{\mathbb{F}}_{p} \subseteq \overline{\mathbb{F}_{p}[t]}$

Notation

- $\operatorname{char}(\mathbb{K})=0, \operatorname{char}(k)=p>0$. The p-adic case. Example $\overline{\mathbb{Q}}_{5}$ the algebraic closure of the 5 -adics. If $x=5^{k} \frac{p}{q} \in \mathbb{Q}, k \in \mathbb{Z}, 5$ does not divide p and q, then

$$
v(x)=k .
$$

This valuation can be extended to the algebraic numbers. Residual field $\overline{\mathbb{F}}_{5} \not \subset \overline{\mathbb{Q}}_{5}$.

Notation

- $\pi: R \rightarrow k=R / m$ denotes the residual class map.
- The tropicalization $T: \mathbb{K}^{*} \rightarrow \mathbb{T}$ is either v (if working with min or $-v$ if working with max)
- We suppose that we have a multiplicative subgroup $\left\{t^{\gamma} \mid \gamma \in \mathbb{T}\right\} \subseteq \mathbb{K}^{*}$ isomorphic to \mathbb{T} by the homomorphism v
- Let $x \in \mathbb{K}^{*}$, we denote the principal coefficient $P c(x)$ as the element $\pi\left(x t^{-v(x)}\right) \in k$ (this is also called angular component.)
- $x \in \mathbb{K}^{*}$ is residually generic if $P c(x)$ is generic in k.

Two Examples of Principal Coefficient

- $\mathbb{K}=\mathbb{C}\{t\}$ the Puiseux series field with the standard valuation. $k=\mathbb{C}$. The group $\left\{t^{\gamma} \mid \gamma \in \mathbb{T}\right\}$ is just the set of elements $t^{m / n}$.

$$
\begin{gathered}
x=\frac{2}{t}+1+t+t^{2} \\
v(x)=-1, P c(x)=\pi(t x)=2 \in \mathbb{C}
\end{gathered}
$$

Two Examples of Principal Coefficient

- $\mathbb{K}=\overline{\mathbb{Q}_{5}}$ the algebraic closure of the rationals with a 5 -adic valuation. $k=\overline{\mathbb{F}_{5}}$. We may take the group t^{γ} as an appropriate set of the form $5^{n / m}$.
If x is a root of valuation -1 of

$$
\frac{2}{5^{5}}+3 z+z^{5}+75 z^{6}
$$

then $5 x$ is a root of $2+3 \cdot 5^{4} z+z^{5}+3 \cdot 5 z^{6}$,

$$
P c(x)=\pi(5 x) \text { is a root of } 2+z^{5} \in \overline{\mathbb{F}_{5}},
$$

$$
P c(x)=2
$$

Tropicalization... (again)

- If $V \subseteq\left(\mathbb{K}^{*}\right)^{n}$ is an algebraic variety, the tropicalization $T(V)$ is the image of V under the map:

$$
\begin{array}{cccc}
T: & \left(\mathbb{K}^{*}\right)^{n} & \rightarrow & \mathbb{T}^{n} \\
& \left(x_{1}, \ldots, x_{n}\right) & \mapsto & \left(-v\left(x_{1}\right), \ldots,-v\left(x_{n}\right)\right)
\end{array}
$$

If $f=" \sum_{i \in I} a_{i} x^{i "}=\max \left\{a_{i}+\langle i, x\rangle\right\}$ is a tropical polynomial, its zero set $\mathcal{T}(f)$ is the set of points is attained for at least two different indices i.
Theorem (Kapranov)
Let $\widetilde{f}=\sum_{i \in I} a_{i} x^{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Let

$$
f=" \sum_{i \in I} T\left(a_{i}\right) x^{i} " \in \mathbb{T}\left[x_{1}, \ldots, x_{n}\right]
$$

Then

$$
T(V(\tilde{f}))=\mathcal{T}(f)
$$

Classical Univariate Resultant

$I, J \subseteq \mathbb{N}$ finite and of cardinality at least 2 such that $0 \in I \cap J$.
$\widetilde{f}=\sum_{i \in I} a_{i} x^{i}, \widetilde{g}=\sum_{j \in J}^{m} b_{j} x^{j} \in \mathbb{K}[x]$, of support I and J.
Let p be the characteristic of \mathbb{K}.
There is a unique polynomial in $\mathbb{Z} /(p \mathbb{Z})\left[a_{i}, b_{j}\right]$, up to a constant factor, called the resultant, such that it vanishes if and only if \tilde{f} and \widetilde{g} have a common root.

Tropical Univariate Resultant Polynomial

Definition
We denote by $R(I, J, \mathbb{K}) \in \mathbb{Z} /(p \mathbb{Z})\left[a_{i}, b_{j}\right]$ this resultant, denote by $R_{t}(I, J, \mathbb{K})$ the tropicalization of the resultant. This tropical polynomial is called the tropical resultant of supports I and J over \mathbb{K}. The tropical variety is denoted by $\mathcal{T}\left(R_{t}(I, J, \mathbb{K})\right)$.

- The tropical resultant polynomial depends on the field \mathbb{K} and the valuation!

Example of Different Tropicalizations of the Resultant

Let $f=a+b x+c x^{2}, g=p+q x+r x^{2}$.
If $\operatorname{char}(\mathbb{K}) \neq 2$ then
$R(\{0,1,2\},\{0,1,2\}, \mathbb{K})=r^{2} a^{2}-2 r a c p+c^{2} p^{2}-q r b a-q b c p+c q^{2} a+p r b^{2}$.
If $\operatorname{char}(\mathbb{K})=2$ then
$R(\{0,1,2\},\{0,1,2\}, \mathbb{K})=r^{2} a^{2}+c^{2} p^{2}-q r b a-q b c p+c q^{2} a+p r b^{2}$.

So the tropical resultant polynomial is: Puiseux series:
$P_{1}=" 0 r^{2} a^{2}+0 \quad r a c p+0 c^{2} p^{2}+0 q r b a+0 q b c p+0 c q^{2} a+0 p r b^{2} "$.
2-adics:
$P_{2}=" 0 r^{2} a^{2}+(-1) r a c p+0 c^{2} p^{2}+0 q r b a+0 q b c p+0 c q^{2} a+0 p r b^{2} "$. char 2:

$$
P_{3}=" 0 r^{2} a^{2}+\quad+0 c^{2} p^{2}+0 q r b a+0 q b c p+0 c q^{2} a+0 p r b^{2} "
$$

Geometric Meaning of the Resultant

Theorem

The tropical variety defined by $R_{t}(I, J, \mathbb{K})$ does not depend on the field \mathbb{K}.
$f=" \sum_{i \in I} a_{i} x^{i "}, g=" \sum_{j \in J}^{m} b_{j} x^{j} "$ have a common tropical root if and only if the point $\left(a_{i}, b_{j}\right)$ belongs to the variety defined by $R_{t}(I, J, \mathbb{K})$.

Puiseux series:
$P_{1}=" 0 r^{2} a^{2}+0 \quad r a c p+0 c^{2} p^{2}+0 q r b a+0 q b c p+0 c q^{2} a+0 p r b^{2} "$. 2-adics:
$P_{2}=" 0 r^{2} a^{2}+(-1) r a c p+0 c^{2} p^{2}+0 q r b a+0 q b c p+0 c q^{2} a+0 p r b^{2} "$.
char 2:
$P_{3}=" 0 r^{2} a^{2}+\quad 0 c^{2} p^{2}+0 q r b a+0 q b c p+0 c q^{2} a+0 p r b^{2} "$.
The tropical variety defined by P_{1}, P_{2} and P_{3} is the same.

Idea of the Proof

- Direct: In the resultant, the coefficients of monomials that are vertices of the Newton polytope are always ± 1 [Sturmfels, 1994]
- Lifting Proof: Two tropical polynomials with a common tropical root can always be lifted to two algebraic polynomials with a common algebraic root. This happens because they form an acyclic incidence configuration and Kapranov's theorem.

Bivariate Resultants

Let $\widetilde{f}=\sum \widetilde{a}_{i, j} x^{i} y^{j}, \widetilde{g}=\sum \widetilde{b}_{k, l} x^{k} y^{l} \in \mathbb{K}[x, y]$.
$\operatorname{Res}(\tilde{f}, \tilde{g}, y)$ is a polynomial in $\mathbb{K}[x]$ such that its roots are the x-th coordinates of the finite set $\{\tilde{f}=\widetilde{g}=0\}$.

Tropical Bivariate Resultants

$f=" \sum_{i, j} a_{i, j} x^{i} y^{j} ", g=" \sum_{k, l} b_{k, l} x^{k} y^{l} " \in \mathbb{T}[x, y]$
We define the resultant of f and g with respect to y as an specialization of the corresponding univariate resultant: ej:
$f=" 0+2 x+3 y ", g=" 2+3 x+3 y+3 x y+2 x^{2}+0 y^{2} "$

- Rewrite them as polynomials in $\mathbb{T}[y][x]$,

$$
f=(0+3 y)+(2) x, g=\left(2+3 y+0 y^{2}\right)+(3+3 y) x+(2) x^{2}
$$

- Compute the univariate resultant corresponding to the supports of the polynomials w.r.t. x: $I=\{0,1\}, J=\{0,1,2\}$,

$$
\begin{gathered}
R(I, J, \mathbb{C}\{t\})=\operatorname{Res}_{x}\left(A_{0}+A_{1} x, B_{0}+B_{1} x+B_{2} x^{2}\right)= \\
=A_{1}^{2} B_{0}-A_{0} A_{1} B_{1}+B_{2} A_{0}^{2} \\
R_{t}(I, J, \mathbb{C}\{t\})=" 0 A_{1}^{2} B_{0}+0 A_{0} A_{1} B_{1}+0 B_{2} A_{0}^{2 \prime \prime}
\end{gathered}
$$

Tropical Bivariate Resultants

- Rewrite them as polynomials in $\mathbb{T}[y][x]$,

$$
f=(0+3 y)+(2) x, g=\left(2+3 y+0 y^{2}\right)+(3+3 y) x+(2) x^{2}
$$

- Compute the univariate resultant corresponding to the supports of the polynomials w.r.t. x: $I=\{0,1\}, J=\{0,1,2\}$,

$$
\begin{gathered}
R(I, J, \mathbb{C}\{t\}, x)=\operatorname{Res}_{x}\left(A_{0}+A_{1} x, B_{0}+B_{1} x+B_{2} x^{2}\right)= \\
=A_{1}^{2} B_{0}-A_{0} A_{1} B_{1}+B_{2} A_{0}^{2} \\
R_{t}(I, J, \mathbb{C}\{t\}, x)=" 0 A_{1}^{2} B_{0}+0 A_{0} A_{1} B_{1}+0 B_{2} A_{0}^{2} "
\end{gathered}
$$

- Evaluate this tropical resultant in the coefficients of f and g

$$
\begin{gathered}
R_{t}(f, g, x)=" 2^{2}\left(2+3 y+0 y^{2}\right)+(0+3 y)(2)(3+3 y)+(2)(0+3 y)^{2} "= \\
=" 6+8 y+8 y^{2} "
\end{gathered}
$$

Tropical Bivariate Resultant

- This resultant polynomial may vary depending essentially on the characteristics of \mathbb{K} and k.
- However, the roots of the resultant polynomial do not depend on \mathbb{K} and v, only of f and g.
- Practical hints to decrease the number of monomials in a resultant polynomial:
- In the univariate algebraic resultant, we can get rid off every monomial whose coefficient is not ± 1.
- In the specialization of the coefficients, we can use the equality $"(a+b)^{n "}=" a^{n}+b^{n "}$.

Valuation Meaning of the Roots of the Resultant

Theorem
Let $\widetilde{f}=\sum_{i, j} \widetilde{a}_{i, j} x^{i} y^{j}, \widetilde{g}=\sum_{k, l} \widetilde{b}_{k, l} x^{k} y^{l} \in \mathbb{K}[x, y]$.
Let $f=T(\widetilde{f})=" \sum_{i, j} T\left(\widetilde{a}_{i, j}\right) x^{i} y^{j} ", g=T(\widetilde{g})=" \sum_{k, l} T\left(\widetilde{b}_{k, l}\right) x^{k} y^{l} "$
Let $h(y)=\operatorname{Res}_{x}(\widetilde{f}, \widetilde{g})$.
If the coefficients of \tilde{f}, \tilde{g} are residually generic then

$$
T(\{h(y)=0\})=\mathcal{T}\left(\operatorname{Res}_{x}(f, g, \mathbb{K})\right)
$$

That is, the tropical resultant encodes the tropicalization of the algebraic resultant, whenever the coefficients are generic enough.

Geometric Meaning of the Roots of the Resultant

- Recall the notion of stable intersection. Given two tropical curves, there is a well defined finite set of intersection points that varies continuously as the curves are perturbed and that verifies Bernstein-Koushnirenko theorem.

Geometric Meaning of the Roots of the Resultant

$$
\begin{gathered}
f=" 0+2 x+3 y ", g=" 2+3 x+3 y+3 x y+2 x^{2}+0 y^{2} " \\
R_{t}(f, g, x)=" 6+8 y+8 y^{2} " \text { roots: }-2,0
\end{gathered}
$$

Geometric Meaning of the Roots of the Resultant

Lemma

Let f and g be two tropical polynomials in two variables. Then, for any two lifts $\widetilde{f}, \widetilde{g}$ such that their coefficients are residually generic, the intersection of the algebraic curves projects into the stable intersection.

$$
T(\tilde{f} \cap \widetilde{g}) \subseteq \mathcal{T}(f) \cap_{s t} \mathcal{T}(g)
$$

Idea: If q is a non stable intersection point, it belongs to the interior of two parallel edges of $\mathcal{T}(f)$ and $\mathcal{T}(g)$. The residual polynomials \widetilde{f}_{q} and \widetilde{g}_{q} over q can be written as

$$
\tilde{f}_{q}=\sum_{i=0}^{n} \alpha_{i}\left(x^{r} y^{s}\right)^{i}, \tilde{g}_{q}=\sum_{j=0}^{m} \beta_{i}\left(x^{r} y^{s}\right)^{j} .
$$

The resultant of the polynomials $\sum_{i=0}^{n} \alpha_{i} z^{i}, \sum_{j=0}^{m} \beta_{i} z^{j}$ with respect to z must vanish. So there is an algebraic dependence among these residual coefficients.

Geometric Meaning of the Roots of the Resultant

Theorem
Let $\widetilde{f}, \widetilde{g} \in \mathbb{K}[x, y]$. Then, it can be computed a finite set of polynomials in the principal coefficients of $\widetilde{f}, \widetilde{g}$ such that, if no one of them vanish, the tropicalization of the intersection of $\widetilde{f}, \widetilde{g}$ is the stable intersection of f and g. Moreover, the multiplicities are conserved.

$$
\sum_{\substack{\tilde{q} \in \tilde{\tilde{F}} \cap \tilde{g} \\ T(\tilde{q})=q}} m u l t(\widetilde{q})=m u l_{t}(q)
$$

This theorem is proved using the correspondence between the several algebraic and tropical resultants and the previous lemma.

Geometric Meaning of the Roots of the Resultant

Corollary

Let $f, g \in \mathbb{T}[x, y]$ be two tropical polynomials. Let

$$
h(y) \in \mathbb{T}[y]=\operatorname{Res}_{x}(f, g, \mathbb{K})
$$

be a tropical resultant of f and g with respect to x. Then, the tropical roots of h are exactly the y-th coordinates of the stable intersection of f and g.

- This is an indirect prove that all the polynomial resultants define the same points.

How to Compute the Stable Intersection and the Compatibility with the Algebraic Case

- In the tropical setting

$$
f \cap_{s t} g \subseteq f \cap g \cap \operatorname{Res}_{x}(f, g) \cap \operatorname{Res}_{y}(f, g)
$$

the right-hand set is finite but may be greater than the stable intersection.
Solution: Let a be such that $x-a y$ is injective in the right-hand set.
Let $z=x y^{-a}$.
The resultant

$$
\operatorname{Res}_{y}\left(\widetilde{f}\left(z y^{a}, y\right), \widetilde{g}\left(z y^{a}, y\right)\right)=\widetilde{R}(z)=\widetilde{R}\left(x y^{-a}\right)
$$

has as roots the values that the function $x-a y$ takes on the stable intersection.

Applications

- Transfer a proof of Berstein-Koushnirenko theorem in the plane to the positive characteristic case. (See Rojas 1999 for an alternative proof of this theorem in positive characteristic in the general context.) - If $\widetilde{f}, \widetilde{g} \in \mathbb{K}[x, y], R(x)=\operatorname{Res}_{y}(\widetilde{f}, \widetilde{g}), R(y)=\operatorname{Res}_{x}(\widetilde{f}, \widetilde{g})$, Let a such that $x-a y$ is injective in $T(\widetilde{f}) \cap T(\widetilde{g}) \cap T(R(x)) \cap T(R(y))$, then

$$
\tilde{f}, \widetilde{g}, R(x), R(y), \operatorname{Res}_{y}\left(\widetilde{f}\left(z y^{a}, y\right), \tilde{f}\left(z y^{a}, y\right)\right)\left(x y^{-a}\right)
$$

is a tropical basis of the ideal $(\widetilde{f}, \widetilde{g})$ (This result has been generalized independently by Hept and Theobald, 2007)

- Resultants are a tool used in the construction method to prove classical theorems in tropical geometry, ej: converse Pascal theorem or Cayley-Bacharach.

Open Problem

- How to compute the tropical resultant directly?

The tropical determinant of the Sylvester matrix should work, this is a problem of deciding if the Newton polytope of the determinant and the permanent of the Sylvester matrix is equal or not.

