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1. Welschinger invariants of real Del Pezzo surfaces.

The Gromov-Witten (further on, shortly GW) theory is the key tool for the

enumeration of complex algebraic curves of a given genus and a given homology class,

lying in a given complex algebraic variety and matching the respective number of

generic constraints.

The Welschinger invariants serve as a real analogue of the GW-invariants. As

enumerative invariants, they are defined for real rational symplectic manifolds of

dimension ≥ 4, and count real rational pseudoholomorphic curves in a given ho-

mology class. In the case of real Del Pezzo surfaces (whose complex structure is

generic among tame almost complex structures in the underlying symplectic man-

ifold), Welschinger invariants count real algebraic curves in a given linear system

passing through respective number of generic points.

Let Σ be a real Del Pezzo surface with a non-empty real part. Given

• a real effective divisor D ⊂ Σ,

• a generic configuration ω of (−DKΣ − 1) points, containing m ≥ 0 pairs of

imaginary conjugate points and (−DKΣ− 1− 2m) real points on a connected

component Σi ⊂ RΣ,

the Welschinger invariant Wm,Σi
(Σ, D) is defined as the number of real rational

curves C ∈ |D| on Σ, passing through the configuration ω, and counted with weights

w(C) = (−1)s(C), where s(C) is the number of the solitary real nodes of C. The

number Wm,Σi
(Σ, D) does not depend on the choice of ω, but only on the parameters

m, Σi, and D.

Further on, we consider only Welschinger invariants associated with the totally

real configurations of points, i.e. m = 0, and the surfaces with a connected nonempty

real point set (i.e., b0(RΣ) = 1), and thus, we simply write W0(Σ, D).
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Figure 1: Welschinger sign of a real rational curve
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Figure 2: Bifurcations of Rω(Σ, D)
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As an immediate enumerative application, we obtain the relation

|W0(Σ, D)| ≤ Rω(Σ, D) ≤ GW0(Σ, D) , (1)

where Rω(Σ, D) is the number of real rational curves C ∈ |D|, passing through the

configuration ω, and GW0(Σ, D) is the respective genus zero GW-invariant (i.e., the

number of complex rational curves C ∈ |D|, passing through the configuration ω).

Inequality (1) provides answers the following important questions:

Question 1. Given a real Del Pezzo surface Σ, a real ample divisor D ⊂ Σ, and a

generic conjugation invariant configuration ω of −DKΣ − 1 points in Σ, does there

exist a real rational curve C ∈ |D|, passing through ω?

Question 2. Assuming that Rω(Σ, D) is always positive, how far is it from

GW0(Σ, D)?

The known ways to compute Welschinger invariants are based on

- the tropical algebraic geometry (Mikhalkin, Itenberg, Kharlamov, Sh., Brugallé),

- the theory of open Gromov-Witten invariants (Solomon),

- the symplectic field theory (Welschinger).

We shall discuss the tropical approach which allows one to answer the above

questions in a series of interesting cases, leads to Caporaso-Harris type recursive

formulas for the Welschinger invariants, and reveals interesting phenomena in the

tropical geometry, in particular, the existence of tropical enumerative invariants.
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2. Welschinger invariants associated with the totally real configurations

of points.

Example 1 (Itenberg, Kharlamov, Sh.) For the projective plane,

d 1 2 3 4 5 6
W0 1 1 8 240 18264 2845440
GW0 1 1 12 620 67304 26312976

One can see that these invariants are positive and grow very rapidly. Precise

statements are as follows:

Theorem 1 (IKS) Let Σ be a real toric Del Pezzo surface Σ with a nonempty real

point set, or P2
k,l, 4 ≤ k + 2l ≤ 5, the plane, blown up at a generic configuration of

k real and l pairs of imaginary conjugate points. Then, for any real ample divisor

D ⊂ Σ,

W0(Σ, D) > 0 , (2)

and

lim
n→∞

log W0(Σ, nD)

n log n
= lim

n→∞
log GW0(Σ, nD)

n log n
= −DKΣ . (3)

In particular, through any generic configuration of −DKΣ − 1 real points on

Σ, one can trace a real rational curve C ∈ |D|), and, moreover, the number of

such curves is logarithmic equivalent to the number of all (complex) rational curves

through the given points. So, among the main problems remains

Conjecture 1 Relations (2) and (3) hold for any real Del Pezzo surface Σ with

b0(RΣ) = 1 and for any real ample divisor D ⊂ Σ.
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Among other observed properties of W0(Σ, D) we mention the monotone be-

havior with respect to the divisor D and arithmetic relations to the Gromov-Witten

invariants:

Theorem 2 Let Σ = P2, or P2
k, k = 1, 2, 3, or Σ = (P1)2 (i.e., a toric Del Pezzo

surface with the standard real structure). Then

• (IKS) for any real ample divisors D, D′ with effective D −D′,

W0(Σ, D) ≥ W0(Σ, D′) , (4)

and, furthermore,

W0(Σ, D) > W0(Σ, D′) as pa(D) > pa(D
′) ; (5)

• (Mikhalkin) for a real ample divisor D,

W0(Σ, D) ≡ GW0(Σ, D) mod 4 . (6)

Numerical experiments suggest the following

Conjecture 2

• Inequalities (4) and (5) hold for any real Del Pezzo surface Σ with b0(RΣ) = 1.

• Congruence (6) holds for any real Del Pezzo M-surface Σ (i.e., satisfying

b∗(Σ,Z2) = b∗(RΣ,Z2)) and any real ample divisor D ⊂ Σ.

Question 3. Is there any congruence, relating W0 and GW0, for (M − i)-surfaces?

What powers of 2 divide W0(Σ, D)? GW0(Σ, D)?
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3. The tropical enumerative geometry in the plane.

A parameterized plane tropical curve (PPT-curve) is a triple T = (Γ, w, h),

where Γ is a finite graph without divalent vertices, w : Γ1 → Z a positive weight

function defined on the set of the edges Γ1 of Γ, and h : Γ → R2 a proper continuous

map defined on Γ, the complement to the set of univalent vertices, such that

• h takes any edge of Γ injectively to a straight line with a rational slope,

• for any vertex v of Γ, one has the balancing condition

∑

v∈e∈Γ1

w(e) · uv(e) = 0 ,

where uv(e) is the primitive integral vector emanating from h(v) and directing

h(e), and the nondegeneracy condition

Span{uv(e) : v ∈ e ∈ Γ1} = R2 .

The degree of T is the unordered sequence of the vectors

{w(e) · uv(e) : v ∈ e ∈ Γ1
∞, v ∈ Γ0} ,

Γ1
∞ being the set of ends Γ (edges merging to univalent vertices. The degree uniquely

determines the Newton polygon of T . If Γ is connected, T is said to be irreducible.

The genus of an irreducible curve is g(T ) = b1(Γ).

If Γ is trivalent graph, and w(e) = 1 for all ends e, the curve T is called simple.
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Figure 3: Plane tropical curve
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4. Correspondence theorems.

Theorem 3 (Mikhalkin) Let ∆ ⊂ R2 be a nongegenerate convex lattice polygon,

Σ = Tor(∆) an associated toric surface, L∆ the tautological line bundle.

• the number of irreducible curves C ∈ |L∆| of genus g, passing through a generic

configuration of −DKΣ − 1 + g points in Σ, equals to the number of simple

plane irreducible PPT-curves T of genus g with Newton polygon ∆, passing

through a generic configuration of −DKΣ − 1 + g points in R2 and counted

with certain integral positive multiplicities M(T ).

• If Σ is a toric Del Pezzo surface with the standard real structure, then

W0(Σ,L∆) equals to the number of simple irreducible rational curves T , pass-

ing through a generic configuration of −DKΣ − 1 points in R2 and counted

with certain multiplicities W (T ) (±1 for T with odd-valued weight function w,

and 0 otherwise).

There are similar correspondence theorems for computing Wm with m > 0

(Sh). All they serve as a key tool in the proof of the known properties of Welschinger

invariants, but, on the other hand, are restricted to the toric case.

The correspondence: consider the algebraic enumerative problem over the field

of complex Puiseux series K =
⋃
C((t1/k)) with the non-Archimedean valuation

Val(
∑

r art
r) = −min{r : ar 6= 0}. Then

Closure


Val

{
(x, y) ∈ (K∗)2 :

∑

(i,j)∈∆

Aijx
iyj = 0

}


is (the image of) a plane tropical curve with Newton polygon ∆.
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5. The Caporaso-Harris formula for Welschinger invariants.

Let Σ = P2, (P1)2, or P2
k,l, 1 ≤ k + 2l ≤ 5. Let E ⊂ Σ be a smooth real

rational curve, avoiding imaginary exceptional divisors, with the minimal possible

value of E2. Denote by A(Σ, E) ⊂ Pic(Σ) the semigroup, which contains 0 and

is generated by the irreducible real effective divisors, crossing E. Introduce an

operation SE : A(Σ, E) → A(Σ, E), letting SE(D) = D − E if D − E ∈ A(Σ, E),

and SE(D) = 0 otherwise. The classes D ∈ S−1
E (0) ⊂ A(Σ) are called initial.

Introduce the semigroup Z∞,odd
+ of integral nonnegative vectors with finite

norms

|α| =
∑

j

αj, Jα =
∑

j

(2j − 1)αj, α = (α1, α2, ...) ∈ Z∞,odd
+ ,

and put

Ã(Σ, E) = {(D, α, β) ∈ A(Σ, E)⊕ (Z∞,odd
+ )2 : J(α + β) = DE} .

Let a function W : Ã(Σ, E) → Z satisfy

W (D,α, β) =
∑

k≥1
βk>0

W (D, α + ek, β − ek)

+
∑(

α
α(1), ..., α(m)

)
n!

n1!...nm!

m∏
i=1

βki
W (D(i), α(i), β(i)) , (7)

where the second sum is taken over all splittings in Ã(Σ) (factorized by possible

permutations)

(SE(D), α′, β′) =
m∑

i=1

(D(i), α(i), β(i)) ,

satisfying the following conditions

α′ ≤ α, β′ = β +
m∑

i=1

eki
, β

(i)
ki
≥ 1, J(α′ + β′) = SE(D) · E ,

and the remaining items are defined by
(

α
α(1), ..., α(m)

)
=

∏

k≥1

αk!

α
(1)
k !...α

(m)
k !(αk − α′k)!

,

n = −(KΣ + E)D + |β| − 1, ni = −(KΣ + E)D(i) + |β(i)| − 1, i = 1, ..., m .

10



Theorem 4 (IKS) The function W : Ã(Σ, E) → Z defined by formula (7), is

uniquely determined by the initial values

W (D,α, 0) =

{
1, if the generic member of D is irreducible,

0, if the generic member of D is reducible,

where SE(D) = 0, and satisfies

W (D, 0, (DE)) = W0(Σ, D) for all D ∈ A(Σ, E) .

Remark 2 This theorem provides the positivity and the asymptotics of W0(Σ, D)

in case of the real non-toric Del Pezzo surfaces P2
k,l, 4 ≤ k + 2l ≤ 5.

Idea of the proof.

• First, we prove a Caporaso-Harris type formula for the numbers, which count

specific PPT-curves T with certain multiplicities M(T ), and then show that it

coincides with the Caposaso-Harris-Vakil formula for the absolute and relative

genus zero Gromov-Witten invariants of Σ (relative invariants count rational

curves which satisfy imposed tangency conditions with respect to E).

• Using a suitably modified patchworking construction, we assign to each PPT-

curve T a set of M(T ) algebraic curves C ⊂ Σ in count so that all the sets are

disjoint.

• Altogether this provides us with a kind of a correspondence theorem.

• Next, we select real curves C in the above sets, count them with the weights

(−1)s(C), and show that these numbers are equal to the numbers of the con-

sidered PPT-curves with certain multiplicities W (T ).

• Finally, we prove the aforementioned Caporaso-Harris type formula for the

latter numbers.
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6. Moduli spaces of plane tropical curves and tropical enumerative in-

variants.

One can view the discussed complex enumerative invariants as degrees of eval-

uation maps from suitable moduli spaces of marked PPT-curves to Euclidean spaces

(Mikhalkin, Gathmann, Markwig).

For, we modify the definition of a tropical curve, requiring that Γ is a metric

graph, whose ends have infinite length, making h : Γ → R2 to be Z-linear on each

edge and non-vanishing on the ends, leaving the balancing condition, and removing

the non-degeneracy condition for vertices of Γ. An n-marked plane tropical curve is

a quadruple (Γ, w, G, h), where (Γ, w, h) is a (parameterized) plane tropical curve,

G ⊂ Γ an ordered sequence of n distinct points. An isomorphism of marked tropical

curves (Γ, w, G, h) and (Γ
′
, w′, G′, h′) is an isometry ϕ : Γ → Γ′ such that h′ϕ = h,

w′ϕ = w, and G′ = ϕ(G).

Given a convex lattice polygon ∆ ⊂ R2 and g ≤ |Int(∆) ∩ Z2|, put

n = |∂∆ ∩ Z2| − 1 + g. Then the moduli space Mg,n(∆) of simple n-marked

plane tropical curves with Newton polygon ∆ such that G ⊂ Γ is the union of

finitely many open 2n-dimensional polyhedra in some RN . Its closure Mg,n(∆) is a

closed finite pure-dimensional polyhedral complex. Assigning weight 1 to each top-

dimensional face, we obtain a tropical varianty, i.e., the balancing condition along

each (top−1)-dimensional face. This implies, in particular, that the evaluation map

ev : Mg,n(∆) → R2n (which is a restriction of a Z-linear map F : RN → R2n) has a

well defined degree

deg(ev) =
∑

T∈ev−1(x)

| det(d(ev)T )|, x ∈ R2n generic .

Furthermore, | det(d(ev)T )| = M(T ) and

deg(ev) = GWg(Σ,L∆), Σ = Tor(∆) .
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Welschinger invariants can be read off the moduli space of tropical curves as

well. Assume that Σ = Tor(∆) is the real toric Del Pezzo surface with the standard

real structure, n = |∂∆ ∩ Z2| − 1. Then

W0(Σ,L∆) =
∑

T∈ev−1(x)

W (T ), x ∈ R2n generic .

More geometrically, take M (0) ⊂ M0,n(∆), the closure of the union of those

top-dimensional cells of M0,n(∆) on which | det(d(ev))| 6= 0. Notice, that

ev : (M (0), ∂∞M (0)) → (R2n, ∂∞R2n)

is well defined. Then we take M
(0)
W ⊂ M (0), the union of the cells, corresponding

to PPT-curves with odd-valued weight function w, and orient each facet C of M
(0)
W ,

using the map ev and the sign W (T ), T ∈ C.

Claim. (IKS) M
(0)
W is a relative cycle in (M (0), ∂∞M (0)), and

ev∗[M
(0)
W ] = W0(Σ,L∆) ∈ H2n(R2n, ∂∞R2n) .

Question 4. What is the meaning of W0(Σ,L∆) from the tropical intersection

theory point of view?

Question 5. What is H2n(M, ∂∞M) ? What is the meaning of the classes outside

Span{[M (0)
W ], [M

(0)
GW ]} ?
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Figure 4: Moduli space of plane tropical curves and evaluation map





M(T1) + M(T2) = M(T3)

W (T ) ≡ M(T ) mod 4

W (T ) = 0, ±1

=⇒ W (T1) + W (T2) = W (T3)
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First step out. Consider tropical curves of a positive genus g. In the same

manner as above, construct M
(g)
W ⊂ M (g) ⊂Mg,n(∆).

Claim. (IKS) The map ev : (M (g), ∂∞M (g)) → (R2n, ∂∞R2n) is well defined, M
(g)
W

is a relative cycle in (M (g), ∂∞M (g)), and

ev∗[M
(g)
W ] = W g,trop

0 (Σ,L∆) ∈ H2n(R2n, ∂R2n) ,

W g,trop
0 (Σ,L∆) =

∑

T∈ev−1(x)

W (T ), x ∈ R2n generic .

Remark 3 W g,trop
0 (Σ,L∆) equals the number of irreducible real algebraic curves C ∈

|L∆| of genus g, passing through a tropically generic configuration ω of n points in

RΣ and counted with signs (−1)s(C). However this number of real algebraic curves

changes when varying ω in the space of all generic configurations of real points on

Σ.

Claim. (IKS) For any real toric Del Pezzo surface Σ with the standard real struc-

ture, any real ample divisor D ⊂ Σ, and any integer 0 < g ≤ D(D + KΣ)/2 + 1,

W g,trop
0 (Σ, D) > 0 .

Furthermore,

lim
k→∞

log W
g(k),trop
0 (Σ, kD)

k log k
= lim

k→∞
log GWg(k)(Σ, kD)

k log k
= −DKΣ + g0 ,

where

lim
k→∞

g(k)

k
= g0, 0 ≤ g0 ≤ D(D + KΣ)

2
+ 1 .
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Second step out. Perform the preceding construction for the case of arbitrary

nondegenerate convex lattice polygon ∆ ⊂ R2:

M
(0)
W ⊂ M (0) ⊂M0,n(∆) .

Again

Claim. The map ev : (M (0), ∂∞M (0)) → (R2n, ∂∞R2n) is well defined, M
(g)
W is a

relative cycle in (M (0), ∂∞M (0)), and

ev∗[M
(0)
W ] = W 0,trop

0 (Σ,L∆) ∈ H2n(R2n, ∂R2n) ,

W 0,trop
0 (Σ,L∆) =

∑

T∈ev−1(x)

W (T ), x ∈ R2n generic .

Remark 4 W 0,trop
0 (Σ,L∆) equals the number of irreducible real rational algebraic

curves C in the linear system |L∆| on Σ = Tor(∆), passing through a tropically

generic configuration ω of n points in RΣ and counted with signs (−1)s(C). However

this number of real algebraic curves changes when varying ω in the space of all

generic configurations of real points on Σ.

Claim. Assume that (up to SL(Z, 2)-action) all the intersections ∆ ∩ {x = s},
s ∈ Z, are lattice segments (or empty). Then

W 0,trop
0 (Σ,L∆) > 0 .

Furthermore,

lim
k→∞

log W 0,trop
0 (Σ,Lk∆)

k log k
= lim

k→∞
log GW0(Σ,Lk∆)

k log k
= −c1(L∆) ·KΣ .
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Third step out. Now consider the PPT-curves which have a given degree, i.e.,

a given Newton polygon ∆ and a given distribution of positive integral weights on

the ends. Furthermore, extend h : Γ → R2 up to h : Γ → Tortrop(∆) ' ∆ and allow

the marked points to be univalent vertices of Γ.

The preceding procedure goes smoothly in this generality, allowing one to

define real tropical enumerative invariants W g,trop
0 (Σ,L∆, α, β) for any genus g ≥ 0

and any weight distributions of ends: α for ends with marked univalent vertex, β

for free ends.

Remark 5 In the case of toric Del Pezzo surfaces with the standard real structure,

the numbers W (D, α, β) are the tropical enumerative invariants of the above sort.

Question 6. Are the numbers W (D,α, β) tropical enumerative invariants for the

remaining surfaces P2
k,l, k + 2l ≤ 5, l > 0 ?
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Fourth step out: Wm(Σ, D), m > 0, as tropical enumerative invariants.

Notice that the valuation images of conjugate points coincide in R2. Thus, the

set G of marked points of the corresponding PPT-curves (Γ, w, G, h) consists of r

separate points and m pairs of points, where r + 2m = n = −c1(L∆)KΣ − 1, such

that each pair is mapped to one point, and the points of a pair may collide at a

vertex of Γ.

One can construct the moduli space M0,(r,m)(∆) ⊂ RN of such (r,m)-marked

PPT-curves (tropical variety?), and define the evaluation map onto R2(r+m) with

the correctly defined degree

deg(ev) =
∑

T∈(ev)−1(x)

M(T ) = GW0(Σ,L∆), x ∈ R2(r+m) generic ,

and satisfying

∑

T∈(ev)−1(x)

Wm(T ) = W0(Σ,L∆), x ∈ R2(r+m) generic .

Furthermore, one can define a polyhedral subcomplex M ⊂ M0,(r,m)(∆) such that

ev(∂∞M) ⊂ ∂∞R2(r+m), and then construct the chain MW =
∑

Wm(T )·C, C running

over the facets of M .

Fact: The above chain MW is not a (relative) cycle in (M, ∂∞M).
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7. WDVV-equation. The GW-invariants of Del Pezzo surfaces can be

computed recursively, using the WDVV equation (system of equations). Namely,

one can define the (genus zero) Gromov-Witten potential, which in the planar case

turns into

Φ(t0, t1, t2) =
∑

d,n≥0

GW0,d,n((c0t0 + c1t1 + c2t2)
⊗n)

n!
=

t0t
2
1

2
+

∑

d≥1

Ndt
3d−1
2 edt1

(3d− 1)!

(here c0, c − 1, c − 2 are the additive generators of H∗(P2,Z)), and the WDVV

equations are

∑
i,j=0,1,2

∂a∂b∂iΦ · gij · ∂c∂d∂jΦ =
∑

i,j=0,1,2

∂a∂c∂iΦ · gij · ∂b∂d∂jΦ ,

a, b, c, d ∈ {0, 1, 2}, (gij) = (ci∪cj[P2])−1. This, in particular, implies the Kontsevich

formula

Nd =
∑

k+l=d

k2lNkNl

(
l

(
3d− 4
3k − 2

)
− k

(
3d− 4
3k − 1

))
.

Solomon [11, 12] defined open (genus zero) Gromov-Witten invariants

OGWd,k,l : H∗
conj(X,Q)⊗l → Q, X a real symplectic manifold, which in the pla-

nar case form an open Gromov-Witten potential

Ω(t0, t1, t2, u) =
∑

d=2d1,k,l

uk

k!l!
OGWd,k,l((c0t0 + c1t1 + c2t2))

⊗l)

+
√−1

∑

d=2d1+1,k,l

uk

k!l!
OGWd,k,l((c0t0 + c1t1 + c2t2))

⊗l)

= u +
∑

k+2l=6d−1

uktl2e
t1d/2

k!l!
21−l(

√−1)dWd,k,l ,

satisfying the following analogues of WDVV equations

∑
i,j

∂a∂b∂iΦ · gij · ∂j∂cΩ + ∂a∂bΩ · ∂u∂cΩ =
∑
i,j

∂c∂b∂iΦ · gij · ∂j∂aΩ + ∂c∂bΩ · ∂u∂aΩ ,

and ∑
i,j

∂a∂b∂iΩ · gij · ∂j∂uΩ + ∂a∂bΩ · ∂2
uΩ = ∂a∂uΩ · ∂b∂uΩ ,

a, b, c ∈ {0, 1, 2}.
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These equations lead to the following analogues of the Kontsevich formula:

(1) for k ≥ 2,

Wd,k =
∑

2d1+d2=d
d1,d2>0
3d1−1≤k

(−1)d123d1−2

[
d2

(
k − 2

3d1 − 2

)
− 2

(
k − 2

3d1 − 1

)]
d2

1d2Nd1Wd2,k−3d1

+
∑

d1+d2=d
d1,d2>0

k1+k2=k−1
k1,k2≥0

(
k − 2

k1

)[
d2

(
3d− 2k − 1

3d1 − 2k1 − 2

)
− d1

(
3d− 2k − 1

3d1 − 2k1 − 1

)]
Wg1,k1Wd2,k2

and

(2) for k ≥ 1, 3d− 2k − 1 ≥ 1,

Wd,k = (−1)d/2+123d2−4d2Nd/2δk,3d/2−1

−
∑

2d1+d2=d
d1,d2>0
3d1≤k

(−1)d1

(
k − 1

3d1 − 1

)
23d1−2d3

1d2Nd1Wd1,k−3d1

+
∑

d1+d2=d
d1,d2>0

k1+k2=k−1
k1,k2≥0

(
k − 1

k1

)[
d2

(
3d− 2k − 2

3d1 − 2k1 − 2

)
− d1

(
3d− 2k − 2

3d1 − 2k1 − 1

)]
d1Wd1,k1Wd2,k2 .

The above sequences of formulas uniquely determine all the invariants Wd,k :=

Wk(P2, d) from the initial value W1,0 = 1.
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