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Cayley graphs

A Cayley graph for a group G is a graph Γ on G which is
invariant under the action of G by right multiplication.
Equivalently, it is a graph which admits G acting regularly on
its vertex set as a group of automorphisms.
Note that, unlike in geometric group theory, I do not assume
that the graph is connected or locally finite.
A Cayley graph is normal if it also admits the action of G by left
multiplication. Note that every Cayley graph for an abelian
group is normal.



Cayley objects

There is nothing special about graphs in this definition.
Accordingly, if S is a structure of any kind (a relational
structure like an order, a first-order structure like a graph, or
even more general), whose underlying set is the group G, we
say that S is a Cayley object for G if it is invariant under the
action of G by right multiplication.
Equivalently, S is a Cayley object for G if it admits the regular
action of G as automorphisms.
I will be concerned here only with relational structures.
We could define a normal Cayley object, but I will require this
only for graphs.



Why are Cayley objects interesting?

I If a structure is a Cayley object for a group, then we have a
group structure on the object concerned. This is interesting
for structures like the Urysohn metric space.

I We may be able to use the group to give an explicit
description of an object constructed in some indirect way.

I Cayley objects are relevant to various problems about
infinite groups, such as the existence of countable
B-groups.



Homogeneous structures

A structure S on a set X is homogeneous if every isomorphism
between finite (induced) substructures of S can be extended to
an automorphism of S.
Homogeneous structures arise in many areas including logic
(model-completeness), Ramsey theory, and topological
dynamics (extremely amenable groups).

Example

(Q,<), the set of rational numbers with its usual order, is
homogeneous. For any isomorphism between finite sets has the
form ai 7→ bi for i = 1, . . . , n, where a1 < · · · < an and
b1 < · · · < bn, and this can be extended to a piecewise-linear
order-preserving map on Q.
I will be concerned only with relational structures here.



Fräıssé’s Theorem

The age of a structure S is the class of all finite structures which
can be embedded in S. Now Fraı̈ssé’s Theorem states:

Theorem
A class C is the age of a countable homogeneous structure S if and
only if C is closed under isomorphism, closed under taking
substructures, contains only countably many members up to
isomorphism, and has the amalgamation property (see next slide). If
these conditions hold, then S is unique up to isomorphism.
If the conditions of the theorem hold, then S is called the
Fraı̈ssé limit of the class C.



The amalgamation property

The amalgamation property for a class C asserts that, if B1, B2
are members of C with a common substructure A, then they can
be “glued together” along A to create a larger structure in C.
More formally, if A, B1, B2 ∈ C and fi : A→ Bi are embeddings
for i = 1, 2, then there exists C ∈ C and embeddings gi : Bi → C
for i = 1, 2 so that f1g1 = f2g2 (maps written on the right).
For convenience, I allow A to be empty; this special case is the
joint embedding property.



The problem

The general problem I will be considering is the following:

Problem
Let S be a homogeneous structure on a countable set X. For which
countable groups G is it true that S is a Cayley object for G?
Note that, if all 1-element substructures of S are isomorphic,
then Aut(S) acts transitively on S; if this condition is not
satisfied, then there is no possibility for S to be a Cayley object!
Thus, for example, we should consider only loopless graphs.



Some structures

In the remainder of this talk, I will say something about the
following homogeneous structures:

I the Erdős–Rényi random graph (aka the Rado graph);
I Henson’s Kn-free graphs;
I the Urysohn space;
I Q (as ordered set);
I the generic multiorder (n independent dense orders on a

countable set)



The countable random graph

Our first homogeneous structure is the graph R, the Fraı̈ssé
limit of the class of finite graphs. It has many remarkable
properties. For example, Erdős and Rényi showed that, if we
take a countable vertex set and join pairs of vertices
independently with probability p (where 0 < p < 1), the
resulting graph is isomorphic to R with probability 1.
The graph R is the most prolific homogeneous Cayley object
known, in terms of being a Cayley object for many different
groups.



In a group G, a square-root set is a set of the form
√

a = {x ∈ G : x2 = a}.

It is non-principal if a 6= 1.

Theorem
Let G be a countable group which cannot be written as the union of
finitely many translates of non-principal square-root sets together
with a finite set. Then R is a Cayley object for G.
Indeed, a random Cayley graph for G is isomorphic to R with
probability 1.
There is a necessary condition for R to be a Cayley object for a
group G, which is formally a tiny bit stronger than the
condition of the theorem (though no example of a group
satisfying one but not the other is known).
In particular, R is a Cayley graph for the countable abelian
group G if and only if either G is an elementary abelian
2-group, or the subgroup of elements of order 1 or 2 has infinite
index in G.



An example

The random graph is a Cayley graph for the infinite cyclic
group Z. For a set S of positive integers, Cay(Z, S∪ (−S)) is
isomorphic to R if and only if the characteristic function of S is
a universal sequence, that is, contains every finite binary
sequence as a consecutive subsequence.
A universal sequence can be constructed simply by
concatenating the base-2 representations of the natural
numbers. This gives an explicit construction for R.
Since there are 2ℵ0 universal sequences, it follows that R has 2ℵ0

pairwise non-conjugate cyclic automorphisms.



B-groups

A group X is said to be a B-group if every primitive
permutation group G containing the regular representation of
X is doubly transitive; in other words, if we adjoin
permutations to kill all X-invariant equivalence relations (i.e.
partitions into cosets of subgroups of X), then we necessarily
kill all X-invariant binary relations.
Here B stands for Burnside, who showed (in this terminology)
that cyclic groups of prime-power, non-prime, order are
B-groups. Much more is known about finite groups now; for
example, for almost all n, every group of order n is a B-group.

Problem
Are there any infinite B-groups?



Countable B-groups

If the random graph is a Cayley graph for the countable group
X, then X is not a B-group. For the automorphism group of R is
primitive but not 2-transitive, and contains the regular action of
X.
This simple observation accounts for almost all examples of
non-B-groups.
No example of a countably infinite B-group is currently known!

Theorem
There is no countable abelian B-group.
For if the subgroup of involutions has infinite index in A, then
R is a Cayley graph for A; otherwise, A has finite exponent, so
A = B× C for some infinite subgroups B and C, and A is a
Cayley graph for the countably infinite “rook graph”.



Henson’s graphs

The class of finite graphs containing no complete graph of
order n is a Fraı̈ssé class. (If we add no new edges when we
amalgamate, we cannot create a Kn which was not already
there.) Its Fraı̈ssé limit is Henson’s graph Hn.
The graph H3 is a Cayley graph for many countable groups,
although the conditions are more restrictive than those for R.
One feature is that probabilistic methods no longer work – a
random triangle-free graph has a very strong tendency to be
bipartite – and we have to use methods of Baire category
instead.
Recently Petrov and Vershik found an exchangeable measure
on countable triangle-free graphs which is concentrated on the
isomorphism class of Henson’s graph (the analogue of
Erdős–Rényi); but I have not been able to use their methods to
study H3 as Cayley object.



The situation for Hn for n > 3 is quite different.
A slight modification of an argument in Henson’s original
paper shows:

Theorem
For n > 3, the graph Hn is not a normal Cayley graph for any
countable group; in particular, it is not a Cayley graph for any abelian
group.

Problem
For n > 3, is Hn a Cayley graph for any countable group?



Urysohn space

P. S. Urysohn died in 1924 at the age of 26. His last
(posthumous) paper was a construction of the unique complete
separable metric space which is universal and homogeneous
for finite metric spaces. This space is now known as Urysohn
space U. His work preceded Fraı̈ssé’s, which in its turn
preceded that of Erdős and Rényi.
It can be constructed as follows. Define a metric space to be
rational if all distances are rational numbers. Now the class of
finite rational metric spaces is a Fraı̈ssé class; so it has a Fraı̈ss’é
limit, a countable homogeneous universal rational metric space
(the so-called rational Urysohn space UQ). Now U is the
completion of this space.
If UQ is a Cayley metric space for an abelian group A, then the
action of A extends to U, and the latter is a Cayley metric space
for the group A, the closure of A in the isometry group of U.



Vershik and I showed that there are many isometries of U

whose orbits are dense; so the closures of these infinite cyclic
groups give many abelian groups for which Urysohn space is a
Cayley object (in other words, many abelian group structures
on U).
Unfortunately, we know very little about what these groups
look like; in particular, what torsion is possible.
We also showed that UQ is a Cayley object for the countable
elementary abelian 3-group; so U is a Cayley object for an
uncountable elementary abelian 3-group.



Linear orders

A linear order is a Cayley object for a group G if and only if G is
right-orderable, that is, there is an order on G which is
invariant under right multiplication.
If P denotes the set of positive elements (greater than the
identity), then

I G is the disjoint union of P, {1}, and P−1;
I P2 ⊆ P (that is, P is a sub-semigroup of G).

Conversely, a set satisfying these two conditions gives rise to a
right order on G by the rule x < y if and only if yx−1 ∈ P.



Cantor’s famous theorem characterises Q (as ordered set) by
the properties that it is dense and without endpoints. It is easy
to see that, in this special case, Cantor’s conditions are
equivalent to Fraı̈ssé’s, that is, Q is the unique countable
homogeneous universal ordered set.
Now it is easy to see that a right order on a group G has no
endpoints, and it is dense if and only if the set P of positive
elements satisfies a stronger version of the second condition
above, namely

I P2 = P.
There has been a lot of work on right-ordered groups, and
many examples are known. Usually the question of whether
the order is dense does not arise, but in many cases it is:

I Z has no dense right order, but Z2 has many. For any
irrational number α, let P = {(x, y) ∈ Z2 : x + αy > 0}.

I Q has a dense right order.
I A non-abelian free group has a dense right order.



Generic multiorders

A n-order is a set carrying n total orders. If we don’t want to
specify n, we speak of a multiorder.
Clearly finite n-orders form a Fraı̈ssé class, so there is a unique
countable homogeneous universal n-order, which we call the
generic n-order.
It is characterised by the property

Theorem
Let (X,<1, . . . ,<n) be an n-order. It is generic if and only if, given
any intervals Ii in (X,<i) (possibly semi-infinite) for i = 1, . . . , n,
we have

n⋂
i=1

Ii 6= ∅.

In other words, the intersection of intervals in all but one of the
orders is dense in the remaining order.



Permutation patterns

The subject of permutation patterns is connected with 2-orders.
A permutation consists of the numbers 1, 2, . . . , n written in
some order. A permutation σ occurs in a permutation π if there
is a subset of the positions of π whose entries come in the same
relative order as the elements of σ: for example, the highlighted
positions show that σ = 132 occurs in π = 241563.
Now a permutation is just a finite 2-order (the first order
establishes a bijection from the underlying set to {1, 2, . . . , n},
while the second order corresponds to the rearrangement of
these values given by the permutation). It is easily checked that
σ occurs in π if and only if the 2-order corresponding to σ is
embeddable as an induced substructure in the 2-order
corresponding to π.
Thus, the theory of permutation patterns is the theory of the
age of the generic 2-order!



Ramsey classes and extreme amenability

Böttcher and Foniok showed that the class of finite 2-orders is a
Ramsey class. This was extended to n-orders by Sokić and by
Bodirsky.
According to the beautiful theorem of Kechris, Pestov and
Todorcević, if the objects in a Ramsey class have a total order as
part of their structure, then the automorphism group of the
corresponding countable homogeneous structure is extremely
amenable; that is, any continuous action on a compact space
has a fixed point.
Thus, automorphism groups of generic multiorders give
examples of extremely amenable groups.



Generic multiorders as Cayley objects

The main theorem I want to present here is the following.

Theorem
The generic n-order is a Cayley object for the free abelian group Zm if
and only if m > n.
I will say a bit about the proof of this theorem, since the
techniques used (easy diophantine approximation) are perhaps
a little unexpected.
The object obtained by deleting some of the orders in a generic
multiorder is still generic, and admits any group which the
original multiorder admits.
So, in order to prove the theorem, we have to show that the
generic n-order is a Cayley object for Zn+1 but not for Zn.
We saw earlier the case n = 1.



The positive direction

The proof in the positive direction uses an important result of
Kronecker on diophantine approximation, for which several
proofs are given in Chapter XXIII of Hardy and Wright.

Theorem
Let m be a positive integer, and let c ∈ Rm be a vector whose
components are linearly independent over Q. Then, given any ε > 0,
any line in Rm with direction vector c passes within distance ε of
some lattice point in Zm.
We also need the existence of a certain kind of matrix. These
matrices are plentiful in an abstract (Baire category) sense,
though it is not quite straightforward to construct a particular
example.



Lemma
Let m be a positive integer. Then there exists a m×m real matrix A
having the properties

I A is invertible;
I each row of A has components which are linearly independent

over Q;
I the last row of A is orthogonal to all the others.

Now we give the construction. Define orders <1, . . . ,<m−1 on
Zm by x <i y if ai.x < ai.y, where ai is the ith row of A,
1 ≤ i ≤ n = m− 1. Now an interval in <i consists of vectors
lying between two parallel hyperplanes; the intersection of
these intervals is a cylinder with parallelepiped cross-section in
a direction orthogonal to the first m− 1 rows of the matrix,
hence parallel to the mth row. By Kronecker’s Theorem, there is
a lattice point arbitrarily close to this line, and in particular
close enough that it lies in the cylinder defined by the intervals.
So this intersection is non-empty in the lattice Zm.



The negative direction

I will not give so much detail here. Take n orders <1, . . . ,<n on
Zn. A theorem of Hölder shows that there are nonzero vectors
c1, . . . , cn such that, if ci.x < ci.y, then x <i y. We now divide
into three cases.

I If c1, . . . , cn are linearly independent, and all have
components which are linearly independent over Q, then
the intersection of intervals is an arbitrarily small
parallelepiped, which may contain no lattice point.

I If c1, . . . , cn are linearly independent, and the components
of ci are linearly dependent over Q, then the subspace
orthogonal to ci is free abelian of rank at most n− 1 with an
n− 1-order; by induction, this n− 1-order is not generic.

I If c1, . . . , cn are not linearly independent, then some order
<i is determined by the others, so the multiorder is not
generic.



Other groups

Having the generic n-order as a Cayley object for n > 1 appears
to be a much stronger restriction on a countable group than
simply having a dense right order.

Problem
For which other groups is the generic n-order is a Cayley object? In
particular, are there any such groups which are finitely generated?


