Updown Numbers and the Initial Monomials of the Slope Variety

Jeremy L. Martin (University of Kansas)
Jennifer D. Wagner (Washburn University)

AMS Central Sectional Meeting University of Notre Dame

November 6, 2010

The Slope Variety

$P_{1}=\left(x_{1}, y_{1}\right), \ldots, P_{n}=\left(x_{n}, y_{n}\right):$ labeled points in the plane \mathbb{C}^{2}, with all x_{i} distinct
$L_{i j}=$ line determined by P_{i} and P_{j}

$$
m_{i j}=\frac{y_{i}-y_{j}}{x_{i}-x_{j}}=\text { slope of } L_{i j}
$$

Definition The slope variety S_{n} is the set of slope vectors

$$
\mathbf{m}=\left(m_{12}, m_{13}, \ldots, m_{n-1, n}\right) \in \mathbb{C}_{\binom{n}{2}}
$$

arising from some labeled point set $\left(P_{1}, \ldots, P_{n}\right)$.

The Slope Variety

$R_{n}=\mathbb{C}\left[m_{12}, \ldots, m_{n-1, n}\right]$
$I_{n}=$ ideal of all polynomials that vanish on S_{n}
$=$ constraints on slope vectors

What can we say about I_{n} ?

The Slope Variety

$R_{n}=\mathbb{C}\left[m_{12}, \ldots, m_{n-1, n}\right]$
$I_{n}=$ ideal of all polynomials that vanish on S_{n}
$=$ constraints on slope vectors

What can we say about I_{n} ?

- n points $\Longrightarrow 2 n$ degrees of freedom

The Slope Variety

$R_{n}=\mathbb{C}\left[m_{12}, \ldots, m_{n-1, n}\right]$
$I_{n}=$ ideal of all polynomials that vanish on S_{n}
$=$ constraints on slope vectors

What can we say about I_{n} ?

- n points $\Longrightarrow 2 n$ degrees of freedom
- Translation and scaling don't change the slopes

The Slope Variety

$R_{n}=\mathbb{C}\left[m_{12}, \ldots, m_{n-1, n}\right]$
$I_{n}=$ ideal of all polynomials that vanish on S_{n}
$=$ constraints on slope vectors

What can we say about I_{n} ?

- n points $\Longrightarrow 2 n$ degrees of freedom
- Translation and scaling don't change the slopes
- $\operatorname{dim} S_{n}=\operatorname{dim} R_{n} / I_{n}=2 n-3$.

The Slope Variety

$R_{n}=\mathbb{C}\left[m_{12}, \ldots, m_{n-1, n}\right]$
$I_{n}=$ ideal of all polynomials that vanish on S_{n}
$=$ constraints on slope vectors

What can we say about I_{n} ?

- n points $\Longrightarrow 2 n$ degrees of freedom
- Translation and scaling don't change the slopes
- $\operatorname{dim} S_{n}=\operatorname{dim} R_{n} / I_{n}=2 n-3$.
- For $n \geq 4, S_{n} \neq \mathbb{C}\binom{n}{2}$ and $I_{n} \neq 0$.

Example For $n=4, S_{4}$ is the hypersurface defined by $\tau\left(K_{4}\right)=0$, where

$$
\begin{aligned}
\tau\left(K_{4}\right)= & m_{12} m_{14} m_{23}-m_{13} m_{14} m_{23}-m_{12} m_{13} m_{24} \\
& +m_{13} m_{14} m_{24}+m_{13} m_{23} m_{24}-m_{14} m_{23} m_{24} \\
& +m_{12} m_{13} m_{34}-m_{12} m_{14} m_{34}-m_{12} m_{23} m_{34} \\
& +m_{14} m_{23} m_{34}+m_{12} m_{24} m_{34}-m_{13} m_{24} m_{34}
\end{aligned}
$$

For general $n \geq 4$, the ideal I_{n} has at least $\binom{n}{4}$ cubic generators like this (and possibly others).

Wheels

A k－wheel is a graph consisting of a cycle of length $k \geq 3$ ，and a center vertex adjacent to all vertices of the cycle．

Wheels

A k-wheel is a graph consisting of a cycle of length $k \geq 3$, and a center vertex adjacent to all vertices of the cycle.

- Every wheel can be decomposed into two disjoint spanning trees ("coupled trees") in $2^{k}-2$ ways

Wheels

A k-wheel is a graph consisting of a cycle of length $k \geq 3$, and a center vertex adjacent to all vertices of the cycle.

- Every wheel can be decomposed into two disjoint spanning trees ("coupled trees") in $2^{k}-2$ ways

Wheels

A k-wheel is a graph consisting of a cycle of length $k \geq 3$, and a center vertex adjacent to all vertices of the cycle.

- Every wheel can be decomposed into two disjoint spanning trees ("coupled trees") in $2^{k}-2$ ways
- For $k=3$: coupled trees $=$ spanning paths $=$ permutations of $\{1,2,3,4\}$ modulo reversal

Tree Polynomials

The tree polynomial of W is

$$
\tau(W)=\sum_{T \in \mathscr{T}(W)} \varepsilon(T) \prod_{e \in T} m_{e}
$$

where

$$
\begin{aligned}
\mathscr{T}(W) & =\{\text { coupled spanning trees of } W\}, \\
\varepsilon(T) & \in\{+1,-1\} .
\end{aligned}
$$

Example $\tau\left(K_{4}\right)=\frac{1}{2} \sum_{\sigma \in \mathfrak{S}_{4}} \varepsilon(\sigma) m_{\sigma(1) \sigma(2)} m_{\sigma(2) \sigma(3)} m_{\sigma(3) \sigma(4)}$.

The Ideal of Tree Polynomials

Theorem [JLM '06] Order the variables in R_{n} by

$$
m_{12}<m_{13}<\cdots<m_{1 n}<m_{23}<\cdots
$$

and order monomials either by glex or rlex order. Then:

The Ideal of Tree Polynomials

Theorem [JLM '06] Order the variables in R_{n} by

$$
m_{12}<m_{13}<\cdots<m_{1 n}<m_{23}<\cdots
$$

and order monomials either by glex or rlex order. Then:

- The set of tree polynomials

$$
\left\{\tau(W) \mid \text { wheels } W \subseteq K_{n}\right\}
$$

is a Gröbner basis for the ideal I_{n}.

The Ideal of Tree Polynomials

Theorem [JLM '06] Order the variables in R_{n} by

$$
m_{12}<m_{13}<\cdots<m_{1 n}<m_{23}<\cdots
$$

and order monomials either by glex or rlex order. Then:

- The set of tree polynomials

$$
\left\{\tau(W) \mid \text { wheels } W \subseteq K_{n}\right\}
$$

is a Gröbner basis for the ideal I_{n}.

- R_{n} / I_{n} is reduced and Cohen-Macaulay, and its Hilbert series has a combinatorial interpretation using perfect matchings.

G-Words and R-Words

Definition Let $n \geq 4$. A sequence $w=\left(w_{1}, \ldots, w_{n}\right)$ of distinct positive integers is a G-word if:

1. $w_{1}=\max \left(w_{1}, \ldots, w_{n}\right)$;
2. $w_{n}=\max \left(w_{2}, \ldots, w_{n}\right)$;
3. $w_{2}>w_{n-1}$.

A G-word is primitive if no proper subword is a G-word and no reversal of a proper subword is a G-word.

An R-word is defined similarly by reversing the inequality in (3).

G-Words and R-Words

G-words with digits $\{1,2,3,4,5\}$: 52314 (primitive) 53214 (primitive)
53124 (not primitive: 3124 is the reverse of a G-word)
R-words with digits $\{1,2,3,4,5\}$:
51324 (primitive)
51234 (not primitive: 5123 is an R-word)
52134 (primitive)

Two Initial Ideals

Theorem [JLM '06] The glex (resp. rlex) initial ideal of I_{n} is generated by the squarefree monomials

$$
m_{w}:=m_{w_{1} w_{2}} m_{w_{2} w_{3}} \cdots m_{w_{d-1} w_{d}}
$$

for all G-words (resp. R-words) $w=\left(w_{1}, \ldots, w_{d}\right)$ with $\left\{w_{1}, \ldots, w_{d}\right\} \subseteq[n]$.

Example For $n=5$:

$$
\begin{aligned}
& \operatorname{in}_{\text {glex }}\left(l_{5}\right)=\left\langle m_{4213}, m_{5213}, m_{5214}, m_{5314}, m_{5324}, m_{52314}, m_{53214}\right\rangle \\
& \operatorname{in}_{\mathrm{rlex}}\left(l_{5}\right)=\left\langle m_{4123}, m_{5123}, m_{5124}, m_{5134}, m_{5234}, m_{51324}, m_{52134}\right\rangle
\end{aligned}
$$

Updown Permutations

Definition A permutation $w=w_{1} \cdots w_{n}$ is called updown if

$$
w_{1}<w_{2}>w_{3}<w_{4}>\cdots
$$

Updown Permutations

Definition A permutation $w=w_{1} \cdots w_{n}$ is called updown if

$$
w_{1}<w_{2}>w_{3}<w_{4}>\cdots
$$

Definition The Euler numbers or updown numbers are

$$
u_{n}=\#\{\text { updown permutations of length } n\}
$$

Updown Permutations

Definition A permutation $w=w_{1} \cdots w_{n}$ is called updown if

$$
w_{1}<w_{2}>w_{3}<w_{4}>\cdots
$$

Definition The Euler numbers or updown numbers are

$$
u_{n}=\#\{\text { updown permutations of length } n\}
$$

(Sequence \#A000111 in OEIS: $1,1,2,5,16,61,272, \ldots$)

Updown Permutations

Definition A permutation $w=w_{1} \cdots w_{n}$ is called updown if

$$
w_{1}<w_{2}>w_{3}<w_{4}>\cdots
$$

Definition The Euler numbers or updown numbers are

$$
u_{n}=\#\{\text { updown permutations of length } n\}
$$

(Sequence \#A000111 in OEIS: 1, 1, 2, 5, 16, 61, 272, ...)
Fun Fact $\sum_{n \geq 0} \frac{u_{n}}{n!} x^{n}=\tan x+\sec x$.

Decreasing 012-Trees

Definition A decreasing 012-tree is a rooted tree with vertices labeled by distinct positive integers, such that

- the labels decrease as you move down the tree; and
- every vertex has 0,1 or 2 children.

Theorem [Donaghey, 1975] There is a bijection

$$
\left\{\begin{array}{c}
\text { updown permutations } \\
w \in \mathfrak{S}_{n}
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { decreasing 012-trees } \\
\text { on vertex set }[n]
\end{array}\right\}
$$

Donaghey's Bijection

- Largest digit in updown permutation \rightarrow label of vertex
- Left and right subwords \rightarrow left and right subtrees

The Main Result

Theorem [JLM and Wagner, 2009] There are bijections between

- Primitive G-words of length n
- Primitive R-words of length n
- Decreasing 012-trees of length $n-2$

Corollary For all $3 \leq d \leq n-1$, the number of degree- d generators of $\mathrm{in}\left(I_{n}\right)$ (where $\mathrm{in}=\mathrm{in}_{\text {glex }}$ or $\mathrm{in}=\mathrm{in}_{\text {rlex }}$) is

$$
\binom{n}{d+1} u_{d-1}
$$

Example

- Start with a primitive G-word of length n (e.g., 82536417).
- Construct a rooted tree by splitting w at $n-2$ and labeling children with subwords.
- In right-hand branches, swap $n-2$ and $n-1$.

Open Problems

Question \#1: Do the $\binom{n}{4}$ cubic tree polynomials corresponding to K_{4}-subgraphs of K_{n} generate the ideal I_{n} ?

Open Problems

Question \#1: Do the $\binom{n}{4}$ cubic tree polynomials corresponding to K_{4}-subgraphs of K_{n} generate the ideal I_{n} ?

- Computational evidence says yes. Strangely, this seems difficult to prove!

Open Problems

Question \#1: Do the $\binom{n}{4}$ cubic tree polynomials corresponding to K_{4}-subgraphs of K_{n} generate the ideal I_{n} ?

- Computational evidence says yes. Strangely, this seems difficult to prove!
- T. Enkosky-JLM: Let J_{n} be the ideal generated by the $\tau\left(K_{4}\right)$ s. Then $\operatorname{Spec} R_{n} / J_{n}$ is either S_{n}, or (at worst) has an embedded component of dimension 1 .

Open Problems

Question \#2: What happens in positive characteristic?

Open Problems

Question \#2: What happens in positive characteristic?

- Enkosky: Over $\mathbb{Z} / 2 \mathbb{Z}$, the points of S_{n} are in bijection with complement-reducible graphs / series-parallel networks

Open Problems

Question \#2: What happens in positive characteristic?

- Enkosky: Over $\mathbb{Z} / 2 \mathbb{Z}$, the points of S_{n} are in bijection with complement-reducible graphs / series-parallel networks
- No known combinatorial interpretation (yet) over other finite fields

Open Problems

Question \#2: What happens in positive characteristic?

- Enkosky: Over $\mathbb{Z} / 2 \mathbb{Z}$, the points of S_{n} are in bijection with complement-reducible graphs / series-parallel networks
- No known combinatorial interpretation (yet) over other finite fields
- Unclear whether the ideal I_{n} has additional structure in positive characteristic

Open Problems

Question \#3: What about pictures of K_{n} in higher-dimensional space?

Open Problems

Question \#3: What about pictures of K_{n} in higher-dimensional space?

- Some progress on understanding the higher-dimensional analogues of tree polynomials, but no algebraic results yet

The Hilbert Series of R_{n} / I_{n}

A matching M is a partition of $[2 N]=\{1,2, \ldots, 2 N\}$ into N pairs. A pair $\{x, y\} \in M$ is long if $|x-y| \geq 2$.

$\bar{\Xi}_{N}=$ set of matchings on [N]

Theorem [JLM '06] For $n \geq 4$, the Hilbert series of $T=R_{n} / I_{n}$ is

$$
\sum_{k \geq 0} q^{k} \cdot \operatorname{dim}_{\mathbb{C}}\left(T_{k}\right)=\frac{\sum_{\Xi_{2 n-4}} q^{\# \text { long pairs of } M}}{(1-q)^{2 n-3}} .
$$

The Hilbert Series of R_{5} / I_{5}

Example For $n=5$, the matchings on $[2 n-4]=[6]$ are:

The Hilbert series of $R_{5} / /_{5}$ is

$$
\frac{1+3 q+6 q^{2}+5 q^{3}}{(1-q)^{7}}
$$

