Updown Numbers and the Initial Monomials of the Slope Variety

Jeremy L. Martin (University of Kansas) Jennifer D. Wagner (Washburn University)

> AMS Central Sectional Meeting University of Notre Dame November 6, 2010

 $P_1 = (x_1, y_1), \dots, P_n = (x_n, y_n)$: labeled points in the plane \mathbb{C}^2 , with all x_i distinct

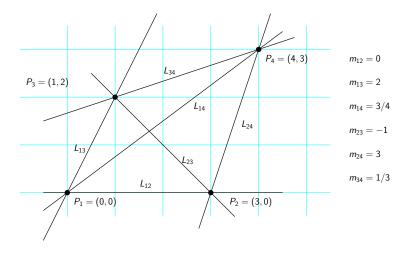
$$L_{ij}$$
 = line determined by P_i and P_j

$$m_{ij} = \frac{y_i - y_j}{x_i - x_j} =$$
slope of L_{ij}

Definition The slope variety S_n is the set of slope vectors

$$\mathbf{m} = (m_{12}, m_{13}, \dots, m_{n-1,n}) \in \mathbb{C}^{\binom{n}{2}}$$

arising from some labeled point set (P_1, \ldots, P_n) .



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ○

$$R_n = \mathbb{C}[m_{12},\ldots,m_{n-1,n}]$$

 I_n = ideal of all polynomials that vanish on S_n = constraints on slope vectors

$$R_n = \mathbb{C}[m_{12},\ldots,m_{n-1,n}]$$

 I_n = ideal of all polynomials that vanish on S_n = constraints on slope vectors

What can we say about I_n ?

• *n* points $\implies 2n$ degrees of freedom

$$R_n = \mathbb{C}[m_{12},\ldots,m_{n-1,n}]$$

 I_n = ideal of all polynomials that vanish on S_n = constraints on slope vectors

- *n* points $\implies 2n$ degrees of freedom
- Translation and scaling don't change the slopes

$$R_n = \mathbb{C}[m_{12},\ldots,m_{n-1,n}]$$

 I_n = ideal of all polynomials that vanish on S_n = constraints on slope vectors

- *n* points $\implies 2n$ degrees of freedom
- Translation and scaling don't change the slopes

• dim
$$S_n$$
 = dim R_n/I_n = $2n - 3$.

$$R_n = \mathbb{C}[m_{12},\ldots,m_{n-1,n}]$$

 I_n = ideal of all polynomials that vanish on S_n = constraints on slope vectors

- *n* points $\implies 2n$ degrees of freedom
- Translation and scaling don't change the slopes

• dim
$$S_n$$
 = dim R_n/I_n = $2n - 3$.

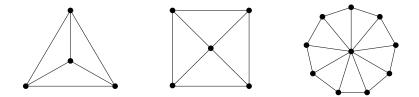
For
$$n \ge 4$$
, $S_n \neq \mathbb{C}^{\binom{n}{2}}$ and $I_n \neq 0$.

Example For n = 4, S_4 is the hypersurface defined by $\tau(K_4) = 0$, where

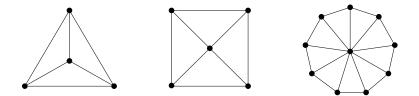
$$\tau(K_4) = m_{12}m_{14}m_{23} - m_{13}m_{14}m_{23} - m_{12}m_{13}m_{24} + m_{13}m_{14}m_{24} + m_{13}m_{23}m_{24} - m_{14}m_{23}m_{24} + m_{12}m_{13}m_{34} - m_{12}m_{14}m_{34} - m_{12}m_{23}m_{34} + m_{14}m_{23}m_{34} + m_{12}m_{24}m_{34} - m_{13}m_{24}m_{34} .$$

For general $n \ge 4$, the ideal I_n has at least $\binom{n}{4}$ cubic generators like this (and possibly others).

A *k*-wheel is a graph consisting of a cycle of length $k \ge 3$, and a center vertex adjacent to all vertices of the cycle.

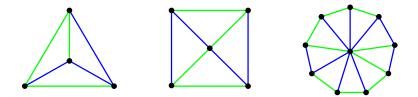


A *k*-wheel is a graph consisting of a cycle of length $k \ge 3$, and a center vertex adjacent to all vertices of the cycle.



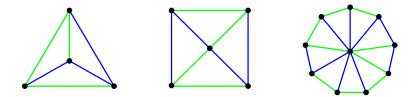
 Every wheel can be decomposed into two disjoint spanning trees ("coupled trees") in 2^k - 2 ways

A *k*-wheel is a graph consisting of a cycle of length $k \ge 3$, and a center vertex adjacent to all vertices of the cycle.



 Every wheel can be decomposed into two disjoint spanning trees ("coupled trees") in 2^k - 2 ways

A *k*-wheel is a graph consisting of a cycle of length $k \ge 3$, and a center vertex adjacent to all vertices of the cycle.



- Every wheel can be decomposed into two disjoint spanning trees ("coupled trees") in 2^k - 2 ways
- ► For k = 3: coupled trees = spanning <u>paths</u> = permutations of {1, 2, 3, 4} modulo reversal

The tree polynomial of W is

$$\tau(W) = \sum_{T \in \mathscr{T}(W)} \varepsilon(T) \prod_{e \in T} m_e$$

where

$$\mathscr{T}(W) = \{ \text{coupled spanning trees of } W \},\ \varepsilon(T) \in \{+1, -1\}.$$

Example
$$\tau(K_4) = \frac{1}{2} \sum_{\sigma \in \mathfrak{S}_4} \varepsilon(\sigma) m_{\sigma(1)\sigma(2)} m_{\sigma(2)\sigma(3)} m_{\sigma(3)\sigma(4)}$$

Theorem [JLM '06] Order the variables in R_n by

```
m_{12} < m_{13} < \cdots < m_{1n} < m_{23} < \cdots
```

-≣⇒

and order monomials either by glex or rlex order. Then:

Theorem [JLM '06] Order the variables in R_n by

```
m_{12} < m_{13} < \cdots < m_{1n} < m_{23} < \cdots
```

and order monomials either by glex or rlex order. Then:

• The set of tree polynomials

 $\{\tau(W) \mid \text{wheels } W \subseteq K_n\}$

is a Gröbner basis for the ideal I_n .

Theorem [JLM '06] Order the variables in R_n by

```
m_{12} < m_{13} < \cdots < m_{1n} < m_{23} < \cdots
```

and order monomials either by glex or rlex order. Then:

• The set of tree polynomials

 $\{\tau(W) \mid \text{wheels } W \subseteq K_n\}$

is a Gröbner basis for the ideal I_n .

• R_n/I_n is reduced and Cohen-Macaulay, and its Hilbert series has a combinatorial interpretation using perfect matchings.

Definition Let $n \ge 4$. A sequence $w = (w_1, \ldots, w_n)$ of distinct positive integers is a **G-word** if:

- 1. $w_1 = \max(w_1, \ldots, w_n);$
- 2. $w_n = \max(w_2, \ldots, w_n);$

3.
$$w_2 > w_{n-1}$$
.

A G-word is *primitive* if no proper subword is a G-word and no reversal of a proper subword is a G-word.

An **R**-word is defined similarly by reversing the inequality in (3).

G-words with digits $\{1, 2, 3, 4, 5\}$:

52314 (primitive)53214 (primitive)53124 (not primitive: 3124 is the reverse of a G-word)

R-words with digits $\{1, 2, 3, 4, 5\}$:

51324 (primitive)51234 (not primitive: 5123 is an R-word)52134 (primitive)

Theorem [JLM '06] The glex (resp. rlex) initial ideal of I_n is generated by the squarefree monomials

$$m_w := m_{w_1w_2}m_{w_2w_3}\cdots m_{w_{d-1}w_d}$$

for all G-words (resp. R-words) $w = (w_1, \ldots, w_d)$ with $\{w_1, \ldots, w_d\} \subseteq [n]$.

Example For n = 5:

Updown Permutations

Definition A permutation $w = w_1 \cdots w_n$ is called **updown** if

 $w_1 < w_2 > w_3 < w_4 > \cdots$

白 と く ヨ と く ヨ と …

3

Definition A permutation $w = w_1 \cdots w_n$ is called **updown** if

$$w_1 < w_2 > w_3 < w_4 > \cdots$$

Definition The Euler numbers or updown numbers are

$$u_n = \# \{ updown permutations of length n \}$$

→ 프 → < 프 →</p>

æ

Definition A permutation $w = w_1 \cdots w_n$ is called **updown** if

$$w_1 < w_2 > w_3 < w_4 > \cdots$$

Definition The Euler numbers or updown numbers are

$$u_n = \# \{ updown permutations of length n \}$$

(Sequence #A000111 in OEIS: 1, 1, 2, 5, 16, 61, 272, ...)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ● ● ●

Definition A permutation $w = w_1 \cdots w_n$ is called **updown** if

$$w_1 < w_2 > w_3 < w_4 > \cdots$$

Definition The Euler numbers or updown numbers are

$$u_n = \# \{ updown permutations of length n \}$$

(Sequence #A000111 in OEIS: 1, 1, 2, 5, 16, 61, 272, ...)

Fun Fact
$$\sum_{n\geq 0} \frac{u_n}{n!} x^n = \tan x + \sec x.$$

Definition A **decreasing 012-tree** is a rooted tree with vertices labeled by distinct positive integers, such that

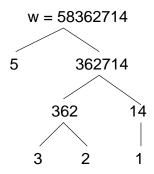
- the labels decrease as you move down the tree; and
- every vertex has 0, 1 or 2 children.

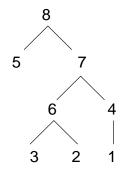
Theorem [Donaghey, 1975] There is a bijection

 $\left\{\begin{array}{c} \text{updown permutations} \\ w \in \mathfrak{S}_n \end{array}\right\} \ \longrightarrow \ \left\{\begin{array}{c} \text{decreasing 012-trees} \\ \text{on vertex set } [n] \end{array}\right\}.$

Donaghey's Bijection

- \blacktriangleright Largest digit in updown permutation \rightarrow label of vertex
- Left and right subwords \rightarrow left and right subtrees





Theorem [JLM and Wagner, 2009] There are bijections between

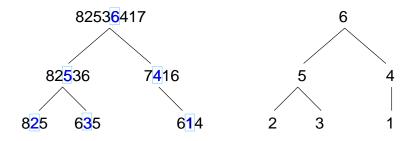
- Primitive G-words of length n
- Primitive R-words of length n
- Decreasing 012-trees of length n-2

Corollary For all $3 \le d \le n-1$, the number of degree-*d* generators of $in(I_n)$ (where $in = in_{glex}$ or $in = in_{rlex}$) is

$$\binom{n}{d+1}u_{d-1}.$$

Example

- ▶ Start with a primitive G-word of length *n* (e.g., 82536417).
- ► Construct a rooted tree by splitting w at n 2 and labeling children with subwords.
- ▶ In right-hand branches, swap n 2 and n 1.



Question #1: Do the $\binom{n}{4}$ cubic tree polynomials corresponding to K_4 -subgraphs of K_n generate the ideal I_n ?

Question #1: Do the $\binom{n}{4}$ cubic tree polynomials corresponding to K_4 -subgraphs of K_n generate the ideal I_n ?

Computational evidence says yes. Strangely, this seems difficult to prove!

Question #1: Do the $\binom{n}{4}$ cubic tree polynomials corresponding to K_4 -subgraphs of K_n generate the ideal I_n ?

- Computational evidence says yes. Strangely, this seems difficult to prove!
- ► T. Enkosky-JLM: Let J_n be the ideal generated by the τ(K₄)s. Then Spec R_n/J_n is either S_n, or (at worst) has an embedded component of dimension 1.

► Enkosky: Over ℤ/2ℤ, the points of S_n are in bijection with complement-reducible graphs / series-parallel networks

- ► Enkosky: Over Z/2Z, the points of S_n are in bijection with complement-reducible graphs / series-parallel networks
- No known combinatorial interpretation (yet) over other finite fields

- ► Enkosky: Over Z/2Z, the points of S_n are in bijection with complement-reducible graphs / series-parallel networks
- No known combinatorial interpretation (yet) over other finite fields
- Unclear whether the ideal In has additional structure in positive characteristic

Question #3: What about pictures of K_n in higher-dimensional space?

個 と く ヨ と く ヨ と

æ

Question #3: What about pictures of K_n in higher-dimensional space?

 Some progress on understanding the higher-dimensional analogues of tree polynomials, but no algebraic results yet

The Hilbert Series of R_n/I_n

A matching M is a partition of $[2N] = \{1, 2, ..., 2N\}$ into N pairs. A pair $\{x, y\} \in M$ is long if $|x - y| \ge 2$.

 \equiv_N = set of matchings on [N] **Theorem** [JLM '06] For $n \ge 4$, the Hilbert series of $T = R_n/I_n$ is

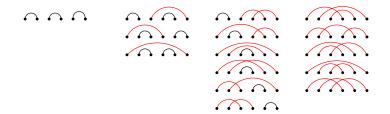
$$\sum_{k\geq 0} q^k \cdot \dim_{\mathbb{C}}(T_k) = \frac{\sum_{M \in \Xi_{2n-4}} q^{\# \text{ long pairs of } M}}{(1-q)^{2n-3}}$$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うえぐ

.

The Hilbert Series of R_5/I_5

Example For n = 5, the matchings on [2n - 4] = [6] are:



The Hilbert series of R_5/I_5 is

$$\frac{1+3q+6q^2+5q^3}{(1-q)^7}.$$