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The Slope Variety

P1 = (x1, y1), . . . ,Pn = (xn, yn): labeled points in the plane C
2,

with all xi distinct

Lij = line determined by Pi and Pj

mij =
yi−yj
xi−xj

= slope of Lij

Definition The slope variety Sn is the set of slope vectors

m = (m12,m13, . . . ,mn−1,n) ∈ C(
n

2)

arising from some labeled point set (P1, . . . ,Pn).



P1 = (0, 0) P2 = (3, 0)

P3 = (1, 2)

P4 = (4, 3)

L12

L13

L14

L23

L24

L34

m12 = 0

m13 = 2

m14 = 3/4

m23 = −1

m24 = 3

m34 = 1/3
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The Slope Variety

Rn = C[m12, . . . ,mn−1,n]

In = ideal of all polynomials that vanish on Sn
= constraints on slope vectors

What can we say about In?

◮ n points =⇒ 2n degrees of freedom

◮ Translation and scaling don’t change the slopes

◮ dim Sn = dimRn/In = 2n − 3.

◮ For n ≥ 4, Sn 6= C(
n

2) and In 6= 0.



Example For n = 4, S4 is the hypersurface defined by τ(K4) = 0,
where

τ(K4) = m12m14m23 −m13m14m23 −m12m13m24

+m13m14m24 +m13m23m24 −m14m23m24

+m12m13m34 −m12m14m34 −m12m23m34

+m14m23m34 +m12m24m34 −m13m24m34 .

For general n ≥ 4, the ideal In has at least
(

n
4

)

cubic generators like
this (and possibly others).
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Wheels

A k-wheel is a graph consisting of a cycle of length k ≥ 3, and a
center vertex adjacent to all vertices of the cycle.

◮ Every wheel can be decomposed into two disjoint spanning
trees (“coupled trees”) in 2k − 2 ways

◮ For k = 3: coupled trees = spanning paths = permutations of
{1, 2, 3, 4} modulo reversal



Tree Polynomials

The tree polynomial of W is

τ(W ) =
∑

T∈T (W )

ε(T )
∏

e∈T

me

where

T (W ) = {coupled spanning trees of W } ,

ε(T ) ∈ {+1,−1}.

Example τ(K4) =
1

2

∑

σ∈S4

ε(σ)mσ(1)σ(2)mσ(2)σ(3)mσ(3)σ(4).
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The Ideal of Tree Polynomials

Theorem [JLM ’06] Order the variables in Rn by

m12 < m13 < · · · < m1n < m23 < · · ·

and order monomials either by glex or rlex order. Then:

• The set of tree polynomials

{τ(W ) | wheels W ⊆ Kn}

is a Gröbner basis for the ideal In.

• Rn/In is reduced and Cohen-Macaulay, and its Hilbert series
has a combinatorial interpretation using perfect matchings.



G-Words and R-Words

Definition Let n ≥ 4. A sequence w = (w1, . . . ,wn) of distinct
positive integers is a G-word if:

1. w1 = max(w1, . . . ,wn);

2. wn = max(w2, . . . ,wn);

3. w2 > wn−1.

A G-word is primitive if no proper subword is a G-word and no
reversal of a proper subword is a G-word.

An R-word is defined similarly by reversing the inequality in (3).



G-Words and R-Words

G-words with digits {1, 2, 3, 4, 5}:
52314 (primitive)
53214 (primitive)
53124 (not primitive: 3124 is the reverse of a G-word)

R-words with digits {1, 2, 3, 4, 5}:
51324 (primitive)
51234 (not primitive: 5123 is an R-word)
52134 (primitive)



Two Initial Ideals

Theorem [JLM ’06] The glex (resp. rlex) initial ideal of In is
generated by the squarefree monomials

mw := mw1w2mw2w3 · · ·mwd−1wd

for all G-words (resp. R-words) w = (w1, . . . ,wd) with
{w1, . . . ,wd} ⊆ [n].

Example For n = 5:

inglex(I5) = 〈m4213, m5213, m5214, m5314, m5324, m52314, m53214〉

inrlex(I5) = 〈m4123, m5123, m5124, m5134, m5234, m51324, m52134〉
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Updown Permutations

Definition A permutation w = w1 · · ·wn is called updown if

w1 < w2 > w3 < w4 > · · ·

Definition The Euler numbers or updown numbers are

un = #{updown permutations of length n}

(Sequence #A000111 in OEIS: 1, 1, 2, 5, 16, 61, 272, . . . )

Fun Fact
∑

n≥0

un

n!
xn = tan x + sec x .

http://www.research.att.com/~njas/sequences/A000111


Decreasing 012-Trees

Definition A decreasing 012-tree is a rooted tree with vertices
labeled by distinct positive integers, such that

◮ the labels decrease as you move down the tree; and

◮ every vertex has 0, 1 or 2 children.

Theorem [Donaghey, 1975] There is a bijection

{

updown permutations
w ∈ Sn

}

−→

{

decreasing 012-trees
on vertex set [n]

}

.



Donaghey’s Bijection

◮ Largest digit in updown permutation → label of vertex

◮ Left and right subwords → left and right subtrees

w = 58362714

5 362714

362 14

3 2 1

5 7

4

3

8

6

12



The Main Result

Theorem [JLM and Wagner, 2009] There are bijections between

◮ Primitive G-words of length n

◮ Primitive R-words of length n

◮ Decreasing 012-trees of length n − 2

Corollary For all 3 ≤ d ≤ n − 1, the number of degree-d
generators of in(In) (where in = inglex or in = inrlex) is

(

n

d + 1

)

ud−1.



Example

◮ Start with a primitive G-word of length n (e.g., 82536417).

◮ Construct a rooted tree by splitting w at n − 2 and labeling
children with subwords.

◮ In right-hand branches, swap n − 2 and n − 1.

5

2 3 1

4

635825 614

6

82536 7416

825364176

2 3

5

1

4
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Open Problems

Question #1: Do the
(

n
4

)

cubic tree polynomials corresponding to
K4-subgraphs of Kn generate the ideal In?

◮ Computational evidence says yes. Strangely, this seems
difficult to prove!

◮ T. Enkosky–JLM: Let Jn be the ideal generated by the
τ(K4)s. Then SpecRn/Jn is either Sn, or (at worst) has an
embedded component of dimension 1.
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Open Problems

Question #2: What happens in positive characteristic?

◮ Enkosky: Over Z/2Z, the points of Sn are in bijection with
complement-reducible graphs / series-parallel networks

◮ No known combinatorial interpretation (yet) over other finite
fields

◮ Unclear whether the ideal In has additional structure in
positive characteristic
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Open Problems

Question #3: What about pictures of Kn in higher-dimensional
space?

◮ Some progress on understanding the higher-dimensional
analogues of tree polynomials, but no algebraic results yet



The Hilbert Series of Rn/In

A matching M is a partition of [2N] = {1, 2, . . . , 2N} into N pairs.
A pair {x , y} ∈ M is long if |x − y | ≥ 2.

long
short

1 82 3 4 5 6 7 9 10

ΞN = set of matchings on [N]

Theorem [JLM ’06] For n ≥ 4, the Hilbert series of T = Rn/In is

∑

k≥0

qk · dimC(Tk) =

∑

M ∈Ξ2n−4

q# long pairs of M

(1− q)2n−3
.



The Hilbert Series of R5/I5

Example For n = 5, the matchings on [2n − 4] = [6] are:

The Hilbert series of R5/I5 is

1 + 3q + 6q2 + 5q3

(1− q)7
.


