Eigenvalues of Simplicial Rook Graphs

Jeremy L. Martin (University of Kansas) Jennifer D. Wagner (Washburn University)

> University of California, Davis November 4, 2013

> > Simplicial Rook Graphs

G = (V, E): connected simple graph (no loops or parallel edges) Adjacency matrix: A = A(G) = matrix with rows and columns indexed by V(G) with 1s for edges, 0s for non-edges

Laplacian matrix: L = D - A, where D = diagonal matrix of vertex degrees

- ► A, L real symmetric ... diagonalizable, real eigenvalues
- ▶ If G is δ -regular ($D = \delta \mathbb{1}$): A, L have same eigenvectors

Spectral graph theory: study of spectra (multisets of eigenvalues) of A(G), L(G)

- A: isoperimetric problems, clustering, expanders...
- L: algebraic combinatorics, Matrix-Tree Theorem, integrality

(ロ) (同) (E) (E) (E)

Many classes of graphs have nice (i.e., integral) Laplacian eigenvalues:

- complete graphs
- complete bipartite graphs
- hypercubes
- threshold graphs (Merris)
- Kneser graphs (Godsil/Royle? Haemers?)

This talk is about a mostly-unstudied (as far as we know) class of graphs that appear to be Laplacian integral and have nice combinatorics.

d, n =positive integers

$$\begin{split} n\Delta^{d-1} &= \text{dilated simplex } \{ \mathbf{v} = (v_1, \dots, v_d) \in \mathbb{R}^d \colon \sum_{i=1}^d v_i = n \} \\ &= \text{conv}\{n\mathbf{e}_1, \dots, n\mathbf{e}_d\} \subseteq \mathbb{R}^d \end{split}$$

Definition

The simplicial rook graph SR(d, n) is the graph with vertices

$$V(d,n) = n\Delta^{d-1} \cap \mathbb{N}^d$$

with two vertices adjacent iff they differ in exactly two coordinates (i.e., they lie on a common "lattice line").

向下 イヨト イヨト

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

•
$$G = SR(d, n)$$
 has $\binom{n+d-1}{d-1}$ vertices.

- G is regular of degree δ = (d − 1)n. Thus spectra of A(G) and L(G) contain same information.
- Independence number α(SR(d, n)) = maximum number of nonattacking rooks on a "simplicial chessboard".

•
$$\alpha(SR(3, n)) = \lfloor (2n+3)/3 \rfloor$$
.
[Nivasch-Lev 2005; Blackburn-Paterson-Stinson 2011]

回 と く ヨ と く ヨ と

The eigenvalues of A(3, n) = A(SR(3, n)) are as follows:

n=2m+1 odd		n = 2m even	
Eigenvalue	Multiplicity	Eigenvalue	Multiplicity
-3	$\binom{2m}{2}$	-3	$\binom{2m-1}{2}$
$-2, \ldots, m-3$	Ĵ	$-2, \ldots, m-4$	3
m-1	2	<i>m</i> – 3	2
$m,\ldots,n-2$	3	$m-1,\ldots,n-2$	3
2 <i>n</i>	1	2 <i>n</i>	1

(4回) (1日) (日)

Corollary

The number of spanning trees of SR(3, n) is

$$\begin{cases} \frac{32(2n+3)^{\binom{n-1}{2}} \prod\limits_{a=n+2}^{2n+2} a^3}{3(n+1)^2(n+2)(3n+5)^3} & \text{if n is odd,} \\ \\ \frac{32(2n+3)^{\binom{n-1}{2}} \prod\limits_{a=n+2}^{2n+2} a^3}{3(n+1)(n+2)^2(3n+4)^3} & \text{if n is even.} \end{cases}$$

白 ト イ ヨ ト イ

-≣->

The eigenvalues of A(3, n) = A(SR(3, n)) are as follows: [...] Method of proof:

∰ ▶ € ▶

The eigenvalues of A(3, n) = A(SR(3, n)) are as follows: [...]

Method of proof:

1. Get Sage to compute eigenbases.

The eigenvalues of A(3, n) = A(SR(3, n)) are as follows: [...]

Method of proof:

- 1. Get Sage to compute eigenbases.
- 2. Stare at the output until you can guess the pattern.

The eigenvalues of A(3, n) = A(SR(3, n)) are as follows: [...]

Method of proof:

- 1. Get Sage to compute eigenbases.
- 2. Stare at the output until you can guess the pattern.
- 3. Prove your guess right by explicit calculation.

The eigenvalues of A(3, n) = A(SR(3, n)) are as follows: [...]

Method of proof:

- 1. Get Sage to compute eigenbases.
- 2. Stare at the output until you can guess the pattern.
- 3. Prove your guess right by explicit calculation.

Conjecture

The graph SR(d, n) is integral for all d and n.

(Strong evidence — we know "most" of the eigenvalues — but no proof yet.)

個 と く ヨ と く ヨ と

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_i > 0$ for all *i*), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3.

個 と く ヨ と く ヨ と

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_i > 0$ for all *i*), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3.

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_i > 0$ for all *i*), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3.

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_i > 0$ for all *i*), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3.

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_i > 0$ for all *i*), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3.

A⊒ ▶ ∢ ∃

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_i > 0$ for all *i*), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3.

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_i > 0$ for all *i*), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3.

A⊒ ▶ ∢ ∃

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_i > 0$ for all *i*), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3.

A⊒ ▶ ∢ ∃

Number of possible centers for a hexagon vector = number of interior vertices of n∆^{d−1} =

$$\binom{n-1}{2}$$

- The hexagon vectors are all linearly independent.
- ► The other ⁿ⁺²₂ - ⁿ⁻²₂ = 3v eigenvectors have explicit formulas in terms of characteristic vectors of lattice lines (the part that required the most staring at data).

回 と く ヨ と く ヨ と

Eigenvectors of SR(d, n): A Synopsis

Now, what about eigenvectors of SR(d, n) for n > 3?

回 と く ヨ と く ヨ と

Now, what about eigenvectors of SR(d, n) for n > 3?

The good news: Hexagon vectors generalize to permutohedron vectors: linearly independent eigenvectors with eigenvalue $-\binom{d}{2}$. These account for "most" eigenvalues.

Now, what about eigenvectors of SR(d, n) for n > 3?

The good news: Hexagon vectors generalize to permutohedron vectors: linearly independent eigenvectors with eigenvalue $-\binom{d}{2}$. These account for "most" eigenvalues.

The bad news: The remaining eigenvalues and their multiplicities are much more obscure. Someone in the audience should figure out the pattern!

白 ト イヨト イヨト

Definition A lattice permutohedron is a polytope in \mathbb{R}^d with vertices

 $\{\mathbf{p} + \sigma \colon \sigma \in \mathfrak{S}_d\}$

where $\mathbf{p} \in \mathbb{Z}^d$ and \mathfrak{S}_d is the symmetric group (with elements regarded as vectors of length d).

"Most" eigenvectors of SR(d, n) are signed characteristic vectors $\mathcal{H}_{\mathbf{p}}$ of lattice permutohedra inscribed in the simplex $n\Delta^{d-1}$.

For each permutohedron P with vertices in SR(d, n), let H_P be its signed characteristic vector:

$$H_P = \sum_{\sigma \in \mathfrak{S}_d} \epsilon(\sigma) \mathbf{e}_{\mathbf{p}+\sigma}$$

- Each H_P is an eigenvalue of A(d, n) with eigenvalue $-\binom{d}{2}$
- The H_P are linearly independent
- Permutohedron vectors account for "most" eigenvectors:

$$\lim_{n\to\infty}\frac{\#\{\mathbf{p}\colon \operatorname{Per}(\mathbf{p})\subset V(SR(d,n))\}}{|V(SR(d,n))|} = \lim_{n\to\infty}\frac{\binom{n-\binom{d-1}{2}}{d-1}}{\binom{n+d-1}{d-1}} = 1.$$

When $n < \binom{d}{2}$, the simplex $n\Delta^{d-1}$ is too small to contain any lattice permutohedra.

When $n < \binom{d}{2}$, the simplex $n\Delta^{d-1}$ is too small to contain any lattice permutohedra.

OTOH, the smallest eigenvalue is -n, and characteristic vectors of partial permutohedra

 $P \cap n\Delta^{d-1}$

are eigenvectors with eigenvalue -n.

When $n < \binom{d}{2}$, the simplex $n\Delta^{d-1}$ is too small to contain any lattice permutohedra.

OTOH, the smallest eigenvalue is -n, and characteristic vectors of partial permutohedra

 $P \cap n\Delta^{d-1}$

are eigenvectors with eigenvalue -n.

Multiplicity of smallest eigenvalue = ?????

When $n < \binom{d}{2}$, the simplex $n\Delta^{d-1}$ is too small to contain any lattice permutohedra.

OTOH, the smallest eigenvalue is -n, and characteristic vectors of partial permutohedra

 $P \cap n\Delta^{d-1}$

are eigenvectors with eigenvalue -n.

Multiplicity of smallest eigenvalue = Mahonian number M(d, n)= number of permutations in \mathfrak{S}_d with n inversions

= coefficient of q^n in $(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{d-1})$

回 と く ヨ と く ヨ と

When $n < \binom{d}{2}$, the simplex $n\Delta^{d-1}$ is too small to contain any lattice permutohedra.

OTOH, the smallest eigenvalue is -n, and characteristic vectors of partial permutohedra

 $P \cap n\Delta^{d-1}$

are eigenvectors with eigenvalue -n.

Multiplicity of smallest eigenvalue = Mahonian number M(d, n)= number of permutations in \mathfrak{S}_d with *n* inversions = coefficient of q^n in $(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{d-1})$

Construction uses (ordinary, non-simplicial) rook theory.

(1日) (1日) (日)

Permutation $\pi \in \mathfrak{S}_d$ with *n* inversions

→ inversion word
$$\mathbf{a} = (a_1, ..., a_d)$$
, where
 $a_i = \#\{j \in [d] : \pi_i > \pi_j\}$ (note: $\sum a_i = n$)

 \rightsquigarrow skyline Ferrers board with column heights given by $\mathbf{a}+\pi$

$$\rightsquigarrow$$
 eigenvector $X_{\pi} = \sum_{\sigma \in R(\pi)} \varepsilon(\sigma) \mathbf{e}_{\pi+\mathbf{a}-\sigma}$
where $R(\pi)$ = set of maximal rook placements on $\mathbf{a} + \pi$

Proof that X_π is an eigenvector: sign-reversing involution moving rooks around

個 と く ヨ と く ヨ と

Example: d = 4, $\pi = 3142$, $\mathbf{a} = (2, 0, 1, 0)$, $\mathbf{a} + \pi = (3, 2, 4, 4)$

 $X_{\pi} = \mathbf{e}_{2010} - \mathbf{e}_{2001} - \mathbf{e}_{1110} + \mathbf{e}_{1101} \\ - \mathbf{e}_{0120} + \mathbf{e}_{0102} + \mathbf{e}_{0030} - \mathbf{e}_{0003}$

Simplicial Rook Graphs

▲圖▶ ▲屋▶ ▲屋▶

æ

- ► (The big one.) Prove that SR(d, n) has integral spectrum for all d, n. (Verified for lots of d, n.)
- The induced subgraphs

 $SR(d, n)|_{V(d,n)\cap P}$

where P is a lattice permutohedron, also appear to be Laplacian integral for all d, n, \mathbf{p} . (Verified for $d \leq 6$.)

 Is A(d, n) determined up to isomorphism by its spectrum? (We don't know.)

向下 イヨト イヨト

Thank you!

Preprint: arxiv:1209.3493 Slides + Sage: http://www.math.ku.edu/~jmartin

Simplicial Rook Graphs

回 と く ヨ と く ヨ と

æ