Eigenvalues of Simplicial Rook Graphs

Jeremy L. Martin (University of Kansas)
Jennifer D. Wagner (Washburn University)

University of California, Davis
November 4, 2013

Graphs, Laplacians, and Spectra

$G=(V, E):$ connected simple graph (no loops or parallel edges) Adjacency matrix: $A=A(G)=$ matrix with rows and columns indexed by $V(G)$ with 1s for edges, 0s for non-edges

Laplacian matrix: $L=D-A$, where $D=$ diagonal matrix of vertex degrees

- A, L real symmetric \therefore diagonalizable, real eigenvalues
- If G is δ-regular $(D=\delta \mathbb{1})$: A, L have same eigenvectors

Spectral graph theory: study of spectra (multisets of eigenvalues) of $A(G), L(G)$

- A: isoperimetric problems, clustering, expanders...
- L: algebraic combinatorics, Matrix-Tree Theorem, integrality

Graphs, Laplacians, and Spectra

Many classes of graphs have nice (i.e., integral) Laplacian eigenvalues:

- complete graphs
- complete bipartite graphs
- hypercubes
- threshold graphs (Merris)
- Kneser graphs (Godsil/Royle? Haemers?)

This talk is about a mostly-unstudied (as far as we know) class of graphs that appear to be Laplacian integral and have nice combinatorics.

Simplicial Rook Graphs

$d, n=$ positive integers

$$
\begin{aligned}
n \Delta^{d-1} & =\operatorname{dilated} \text { simplex }\left\{\mathbf{v}=\left(v_{1}, \ldots, v_{d}\right) \in \mathbb{R}^{d}: \sum_{i=1}^{d} v_{i}=n\right\} \\
& =\operatorname{conv}\left\{n \mathbf{e}_{1}, \ldots, n \mathbf{e}_{d}\right\} \subseteq \mathbb{R}^{d}
\end{aligned}
$$

Definition

The simplicial rook graph $S R(d, n)$ is the graph with vertices

$$
V(d, n)=n \Delta^{d-1} \cap \mathbb{N}^{d}
$$

with two vertices adjacent iff they differ in exactly two coordinates (i.e., they lie on a common "lattice line").

Simplicial Rook Graphs

Simplicial Rook Graphs

Simplicial Rook Graphs

- $G=S R(d, n)$ has $\binom{n+d-1}{d-1}$ vertices.
- G is regular of degree $\delta=(d-1) n$.

Thus spectra of $A(G)$ and $L(G)$ contain same information.

- Independence number $\alpha(S R(d, n))=$ maximum number of nonattacking rooks on a "simplicial chessboard".
- $\alpha(S R(3, n))=\lfloor(2 n+3) / 3\rfloor$.
[Nivasch-Lev 2005; Blackburn-Paterson-Stinson 2011]

The Spectrum of $A(3, n)$

Theorem (JLM/JDW, 2012)
The eigenvalues of $A(3, n)=A(S R(3, n))$ are as follows:
$\mathrm{n}=\mathbf{2 m}+1$ odd
Eigenvalue Multiplicity
-3
$-2, \ldots, m-3$
m-1
$m, \ldots, n-2$
$2 n$
$\binom{2 m}{2}$
3
2
3
1

Eigenvalue
Multiplicity $\left(\begin{array}{c}2 m-1 \\ 2 \\ 3\end{array}\right)$
$-2, \ldots, m-4$
m-3
$m-1, \ldots, n-2$
$2 n$

2
3
1

Counting Spanning Trees

Corollary

The number of spanning trees of $\operatorname{SR}(3, n)$ is

$$
\left\{\begin{array}{l}
\frac{32(2 n+3)^{\binom{n-1}{2}} \prod_{a=n+2}^{2 n+2} a^{3}}{3(n+1)^{2}(n+2)(3 n+5)^{3}} \\
\frac{32(2 n+3)^{\binom{n-1}{2}} \prod_{a=n+2}^{2 n+2} a^{3}}{3(n+1)(n+2)^{2}(3 n+4)^{3}}
\end{array} \quad \text { if } n \text { is odd, } n\right. \text { is even. }
$$

Determining the Spectra

Theorem (JLM/JDW, 2012)
The eigenvalues of $A(3, n)=A(S R(3, n))$ are as follows: [...] Method of proof:

Determining the Spectra

Theorem (JLM/JDW, 2012)
The eigenvalues of $A(3, n)=A(S R(3, n))$ are as follows: [\ldots] Method of proof:

1. Get Sage to compute eigenbases.

Determining the Spectra

Theorem (JLM/JDW, 2012)
The eigenvalues of $A(3, n)=A(S R(3, n))$ are as follows: [...] Method of proof:

1. Get Sage to compute eigenbases.
2. Stare at the output until you can guess the pattern.

Determining the Spectra

Theorem (JLM/JDW, 2012)

The eigenvalues of $A(3, n)=A(S R(3, n))$ are as follows: [...] Method of proof:

1. Get Sage to compute eigenbases.
2. Stare at the output until you can guess the pattern.
3. Prove your guess right by explicit calculation.

Determining the Spectra

Theorem (JLM/JDW, 2012)

The eigenvalues of $A(3, n)=A(S R(3, n))$ are as follows: [\ldots]

Method of proof:

1. Get Sage to compute eigenbases.
2. Stare at the output until you can guess the pattern.
3. Prove your guess right by explicit calculation.

Conjecture

The graph $\operatorname{SR}(d, n)$ is integral for all d and n.
(Strong evidence - we know "most" of the eigenvalues - but no proof yet.)

Hexagon Vectors

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors

For each interior vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors

- Number of possible centers for a hexagon vector $=$ number of interior vertices of $n \Delta^{d-1}=$

$$
\binom{n-1}{2}
$$

- The hexagon vectors are all linearly independent.
- The other $\binom{n+2}{2}-\binom{n-2}{2}=3 v$ eigenvectors have explicit formulas in terms of characteristic vectors of lattice lines (the part that required the most staring at data).

Eigenvectors of $S R(d, n)$: A Synopsis

Now, what about eigenvectors of $S R(d, n)$ for $n>3$?

Eigenvectors of $S R(d, n)$: A Synopsis

Now, what about eigenvectors of $S R(d, n)$ for $n>3$?

The good news: Hexagon vectors generalize to permutohedron vectors: linearly independent eigenvectors with eigenvalue $-\binom{d}{2}$. These account for "most" eigenvalues.

Eigenvectors of $S R(d, n)$: A Synopsis

Now, what about eigenvectors of $S R(d, n)$ for $n>3$?

The good news: Hexagon vectors generalize to permutohedron vectors: linearly independent eigenvectors with eigenvalue $-\binom{d}{2}$. These account for "most" eigenvalues.

The bad news: The remaining eigenvalues and their multiplicities are much more obscure. Someone in the audience should figure out the pattern!

Permutohedron Vectors in $G(d, n)$

Definition

A lattice permutohedron is a polytope in \mathbb{R}^{d} with vertices

$$
\left\{\mathbf{p}+\sigma: \sigma \in \mathfrak{S}_{d}\right\}
$$

where $\mathbf{p} \in \mathbb{Z}^{d}$ and \mathfrak{S}_{d} is the symmetric group (with elements regarded as vectors of length d).
"Most" eigenvectors of $S R(d, n)$ are signed characteristic vectors $\mathcal{H}_{\mathbf{p}}$ of lattice permutohedra inscribed in the simplex $n \Delta^{d-1}$.

Simplicial Rook Graphs

Permutohedron Eigenvectors

For each permutohedron P with vertices in $S R(d, n)$, let H_{P} be its signed characteristic vector:

$$
H_{P}=\sum_{\sigma \in \mathfrak{S}_{d}} \epsilon(\sigma) \mathbf{e}_{\mathbf{p}+\sigma}
$$

- Each H_{P} is an eigenvalue of $A(d, n)$ with eigenvalue $-\binom{d}{2}$
- The H_{P} are linearly independent
- Permutohedron vectors account for "most" eigenvectors:

$$
\lim _{n \rightarrow \infty} \frac{\#\{\mathbf{p}: \operatorname{Per}(\mathbf{p}) \subset V(S R(d, n))\}}{|V(S R(d, n))|}=\lim _{n \rightarrow \infty} \frac{\binom{n-\binom{d-1}{d}}{n}}{\binom{n+d-1}{d-1}}=1
$$

When $n<\binom{d}{2}$, the simplex $n \Delta^{d-1}$ is too small to contain any lattice permutohedra.

The Case $n<\binom{d}{2}$

When $n<\binom{d}{2}$, the simplex $n \Delta^{d-1}$ is too small to contain any lattice permutohedra.

OTOH , the smallest eigenvalue is $-n$, and characteristic vectors of partial permutohedra

$$
P \cap n \Delta^{d-1}
$$

are eigenvectors with eigenvalue $-n$.

The Case $n<\binom{d}{2}$

When $n<\binom{d}{2}$, the simplex $n \Delta^{d-1}$ is too small to contain any lattice permutohedra.

OTOH , the smallest eigenvalue is $-n$, and characteristic vectors of partial permutohedra

$$
P \cap n \Delta^{d-1}
$$

are eigenvectors with eigenvalue $-n$.
Multiplicity of smallest eigenvalue $=$?????

The Case $n<\binom{d}{2}$

When $n<\binom{d}{2}$, the simplex $n \Delta^{d-1}$ is too small to contain any lattice permutohedra.

OTOH , the smallest eigenvalue is $-n$, and characteristic vectors of partial permutohedra

$$
P \cap n \Delta^{d-1}
$$

are eigenvectors with eigenvalue $-n$.

Multiplicity of smallest eigenvalue $=$ Mahonian number $M(d, n)$
$=$ number of permutations in \mathfrak{S}_{d} with n inversions
$=$ coefficient of q^{n} in $(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{d-1}\right)$

The Case $n<\binom{d}{2}$

When $n<\binom{d}{2}$, the simplex $n \Delta^{d-1}$ is too small to contain any lattice permutohedra.

OTOH , the smallest eigenvalue is $-n$, and characteristic vectors of partial permutohedra

$$
P \cap n \Delta^{d-1}
$$

are eigenvectors with eigenvalue $-n$.

Multiplicity of smallest eigenvalue $=$ Mahonian number $M(d, n)$
$=$ number of permutations in \mathfrak{S}_{d} with n inversions
$=$ coefficient of q^{n} in $(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{d-1}\right)$
Construction uses (ordinary, non-simplicial) rook theory.

The Case $n<\binom{d}{2}$

Permutation $\pi \in \mathfrak{S}_{d}$ with n inversions
\rightsquigarrow inversion word $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$, where
$a_{i}=\#\left\{j \in[d]: \pi_{i}>\pi_{j}\right\}\left(\right.$ note: $\left.\sum a_{i}=n\right)$
\rightsquigarrow skyline Ferrers board with column heights given by $\mathbf{a}+\pi$
\rightsquigarrow eigenvector $X_{\pi}=\sum_{\sigma \in R(\pi)} \varepsilon(\sigma) \mathbf{e}_{\pi+\mathbf{a}-\sigma}$
where $R(\pi)=$ set of maximal rook placements on $\mathbf{a}+\pi$

- Proof that X_{π} is an eigenvector: sign-reversing involution moving rooks around

The Case $n<\binom{d}{2}$

Example: $d=4, \pi=3142, \mathbf{a}=(2,0,1,0), \mathbf{a}+\pi=(3,2,4,4)$

$$
\begin{aligned}
X_{\pi} & =\mathbf{e}_{2010}-\mathbf{e}_{2001}-\mathbf{e}_{1110}+\mathbf{e}_{1101} \\
& -\mathbf{e}_{0120}+\mathbf{e}_{0102}+\mathbf{e}_{0030}-\mathbf{e}_{0003}
\end{aligned}
$$

Open Problems

- (The big one.) Prove that $S R(d, n)$ has integral spectrum for all d, n. (Verified for lots of d, n.)
- The induced subgraphs

$$
\left.S R(d, n)\right|_{V(d, n) \cap P}
$$

where P is a lattice permutohedron, also appear to be Laplacian integral for all d, n, \mathbf{p}. (Verified for $d \leq 6$.)

- Is $A(d, n)$ determined up to isomorphism by its spectrum? (We don't know.)

Thank you!

$\begin{array}{ll}\text { Preprint: } & \text { arxiv:1209.3493 } \\ \text { Slides + Sage: } & \text { http://www.math.ku.edu/~jmartin }\end{array}$

