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Graphs, Laplacians, and Spectra

G = (V ,E ): connected simple graph (no loops or parallel edges)
Adjacency matrix: A = A(G ) = matrix with rows and columns
indexed by V (G ) with 1s for edges, 0s for non-edges

Laplacian matrix: L = D − A, where D = diagonal matrix of
vertex degrees

I A, L real symmetric ∴ diagonalizable, real eigenvalues

I If G is δ-regular (D = δ1): A, L have same eigenvectors

Spectral graph theory: study of spectra (multisets of eigenvalues)
of A(G ), L(G )

I A: isoperimetric problems, clustering, expanders. . .

I L: algebraic combinatorics, Matrix-Tree Theorem, integrality
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Graphs, Laplacians, and Spectra

Many classes of graphs have nice (i.e., integral) Laplacian
eigenvalues:

I complete graphs

I complete bipartite graphs

I hypercubes

I threshold graphs (Merris)

I Kneser graphs (Godsil/Royle? Haemers?)

This talk is about a mostly-unstudied (as far as we know) class of
graphs that appear to be Laplacian integral and have nice
combinatorics.
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Simplicial Rook Graphs

d , n = positive integers

n∆d−1 = dilated simplex {v = (v1, . . . , vd) ∈ Rd :
∑d

i=1 vi = n}
= conv{ne1, . . . , ned} ⊆ Rd

Definition
The simplicial rook graph SR(d , n) is the graph with vertices

V (d , n) = n∆d−1 ∩ Nd

with two vertices adjacent iff they differ in exactly two coordinates
(i.e., they lie on a common “lattice line”).
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Simplicial Rook Graphs

I G = SR(d , n) has
(n+d−1

d−1
)

vertices.

I G is regular of degree δ = (d − 1)n.

Thus spectra of A(G ) and L(G ) contain same information.

I Independence number α(SR(d , n)) = maximum number of
nonattacking rooks on a “simplicial chessboard”.

I α(SR(3, n)) = b(2n + 3)/3c.
[Nivasch–Lev 2005; Blackburn–Paterson–Stinson 2011]
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The Spectrum of A(3, n)

Theorem (JLM/JDW, 2012)

The eigenvalues of A(3, n) = A(SR(3, n)) are as follows:

n = 2m + 1 odd n = 2m even

Eigenvalue Multiplicity Eigenvalue Multiplicity

−3
(2m

2

)
−3

(2m−1
2

)
−2, . . . ,m − 3 3 −2, . . . ,m − 4 3

m − 1 2 m − 3 2
m, . . . , n − 2 3 m − 1, . . . , n − 2 3

2n 1 2n 1
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Counting Spanning Trees

Corollary

The number of spanning trees of SR(3, n) is

32(2n + 3)
(n−1

2 ) 2n+2∏
a=n+2

a3

3(n + 1)2(n + 2)(3n + 5)3
if n is odd,

32(2n + 3)
(n−1

2 ) 2n+2∏
a=n+2

a3

3(n + 1)(n + 2)2(3n + 4)3
if n is even.
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Determining the Spectra

Theorem (JLM/JDW, 2012)

The eigenvalues of A(3, n) = A(SR(3, n)) are as follows: [...]

Method of proof:

1. Get Sage to compute eigenbases.

2. Stare at the output until you can guess the pattern.

3. Prove your guess right by explicit calculation.

Conjecture

The graph SR(d , n) is integral for all d and n.

(Strong evidence — we know “most” of the eigenvalues — but no
proof yet.)
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Hexagon Vectors

For each interior vertex v ∈ V (3, n) (i.e., vi > 0 for all i), the
signed characteristic vector of the hexagon centered at v is an
eigenvector with eigenvalue −3.
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Hexagon Vectors

I Number of possible centers for a hexagon vector = number of
interior vertices of n∆d−1 =(

n − 1

2

)
.

I The hexagon vectors are all linearly independent.

I The other
(n+2

2

)
−
(n−2

2

)
= 3v eigenvectors have explicit

formulas in terms of characteristic vectors of lattice lines (the
part that required the most staring at data).
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Eigenvectors of SR(d , n): A Synopsis

Now, what about eigenvectors of SR(d , n) for n > 3?

The good news: Hexagon vectors generalize to permutohedron
vectors: linearly independent eigenvectors with eigenvalue −

(d
2

)
.

These account for “most” eigenvalues.

The bad news: The remaining eigenvalues and their multiplicities
are much more obscure. Someone in the audience should figure
out the pattern!
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Permutohedron Vectors in G (d , n)

Definition
A lattice permutohedron is a polytope in Rd with vertices

{p + σ : σ ∈ Sd}

where p ∈ Zd and Sd is the symmetric group (with elements
regarded as vectors of length d).

“Most” eigenvectors of SR(d , n) are signed characteristic vectors
Hp of lattice permutohedra inscribed in the simplex n∆d−1.
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Permutohedron Eigenvectors

For each permutohedron P with vertices in SR(d , n), let HP be its
signed characteristic vector:

HP =
∑
σ∈Sd

ε(σ)ep+σ

I Each HP is an eigenvalue of A(d , n) with eigenvalue −
(d
2

)
I The HP are linearly independent

I Permutohedron vectors account for “most” eigenvectors:

lim
n→∞

#{p : Per(p) ⊂ V (SR(d , n))}
|V (SR(d , n))|

= lim
n→∞

(n−(d−1
2 )

d−1
)(n+d−1

d−1
) = 1.

Simplicial Rook Graphs



The Case n <
(
d
2

)
When n <

(d
2

)
, the simplex n∆d−1 is too small to contain any

lattice permutohedra.

OTOH, the smallest eigenvalue is −n, and characteristic vectors of
partial permutohedra

P ∩ n∆d−1

are eigenvectors with eigenvalue −n.

Multiplicity of smallest eigenvalue = Mahonian number M(d , n)
= number of permutations in Sd with n inversions
= coefficient of qn in (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qd−1)

Construction uses (ordinary, non-simplicial) rook theory.
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The Case n <
(
d
2

)
Permutation π ∈ Sd with n inversions

 inversion word a = (a1, . . . , ad), where
ai = #{j ∈ [d ] : πi > πj} (note:

∑
ai = n)

 skyline Ferrers board with column heights given by a + π

 eigenvector Xπ =
∑

σ∈R(π)

ε(σ) eπ+a−σ

where R(π) = set of maximal rook placements on a + π

I Proof that Xπ is an eigenvector: sign-reversing involution
moving rooks around
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The Case n <
(
d
2

)
Example: d = 4, π = 3142, a = (2, 0, 1, 0), a + π = (3, 2, 4, 4)

Xπ = e2010 − e2001 − e1110 + e1101

− e0120 + e0102 + e0030 − e0003
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Open Problems

I (The big one.) Prove that SR(d , n) has integral spectrum for
all d , n. (Verified for lots of d , n.)

I The induced subgraphs

SR(d , n)|V (d ,n)∩P ,

where P is a lattice permutohedron, also appear to be
Laplacian integral for all d , n,p. (Verified for d ≤ 6.)

I Is A(d , n) determined up to isomorphism by its spectrum?
(We don’t know.)
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Thank you!

Preprint: arxiv:1209.3493

Slides + Sage: http://www.math.ku.edu/∼jmartin

Simplicial Rook Graphs

http://arxiv.org/abs/1209.3493
http://www.math.ku.edu/~jmartin/

