Fachbereich Mathematik

Dr. Thomas Keilen

Computer Algebra

Due date: Monday, 10/05/2004, 10h00

Exercise 1: Let > be any monomial ordering on Mon_n.

a. Show that for a fixed $w = (w_1, \dots, w_n) \in \mathbb{R}^n$ the following defines a monomial ordering on Mon_n :

$$\underline{x}^{\alpha} >_{(w,>)} \underline{x}^{\beta} \iff \langle w, \alpha \rangle > \langle w, \beta \rangle, \text{ or } (\langle w, \alpha \rangle = \langle w, \beta \rangle \text{ and } \underline{x}^{\alpha} > \underline{x}^{\beta}).$$

Under which assumptions is the above definition independent of the chosen ordering >?

b. Let $A \in Gl_n(\mathbb{Q})$ be an invertible $n \times n$ -matrix over the rational numbers. Show that the following defines a monomial ordering on Mon_n :

$$\underline{\mathbf{x}}^{\alpha} >_{(\mathbf{A},>)} \underline{\mathbf{x}}^{\beta} :\iff \underline{\mathbf{x}}^{\mathbf{A}\alpha} > \underline{\mathbf{x}}^{\mathbf{A}\beta}.$$

Exercise 2: Determine matrices $A \in Gl_n(\mathbb{R})$ which define the following orderings:

- a. $(>_{lp},>_{ds})$, here $n = n_1 + n_2$ with n_1 variables for lp and n_2 for ds;
- b. $(>_{dp},>_{ls})$, here $n = n_1 + n_2$ with n_1 variables for dp and n_2 for ls;
- c. $>_{wp(5,3,4)}$, here n = 3;
- d. $>_{ws(5,3,4)}$, here n = 3.

Exercise 3: Let $M \subset Mon_n$ be a finite subset and $>=>_{lp}$ the lexicographical ordering. Construct a weight vector w which defines > on M, that is such that for $\underline{x}^{\alpha}, \underline{x}^{\beta} \in M$:

$$(\underline{x}^{\alpha} > \underline{x}^{\beta} \iff \langle w, \alpha \rangle > \langle w, \beta \rangle).$$