Fachbereich Mathematik
Summer Semester 2004, Set 2
Dr. Thomas Keilen

Computer Algebra

Due date: Monday, 17/05/2004, 10h00
Exercise 4: Let R be a unique factorisation domain and $S \subset R$ a multiplicatively closed subset.
a. Suppose that S is saturated (i.e. $s \cdot t \in S$ if and only if $s, t \in S$). Show that $f \in R$ is irreducible in $S^{-1} R$ if and only if $f=u \cdot g$ where $g \notin S$ is irreducible in R and $u \in S$.
b. Show that $S^{-1} R$ is a unique factorisation domain.

Hint, replacing S by its saturation in (b) we may assume that S is saturated - compare Commutative Algebra Exercise 10 and see Atyah-Macdonald, Chapter 3 Exercise 7.
Exercise 5: For two monomials $\underline{x}^{\alpha}, \underline{x}^{\beta} \in K[\underline{x}]$ we define

$$
\operatorname{gcd}\left(\underline{x}^{\alpha}, \underline{x}^{\beta}\right)=x_{1}^{\min \left(\alpha_{1}, \beta_{1}\right)} \cdots x_{n}^{\min \left(\alpha_{n}, \beta_{n}\right)} \quad \text { and } \quad \operatorname{lcm}\left(\underline{x}^{\alpha}, \underline{x}^{\beta}\right)=x_{1}^{\max \left(\alpha_{1}, \beta_{1}\right)} \cdots x_{n}^{\max \left(\alpha_{n}, \beta_{n}\right)}
$$

the greatest common divisor respectively the lowest common multiple of the two monomials, and they obviously satisfy the usual properties of ged respectively lcm. Let $I=\left\langle\underline{x}^{\alpha_{i}} \mid i=1, \ldots, k\right\rangle$ and $J=\left\langle\underline{x}^{\beta_{j}} \mid j=1, \ldots, l\right\rangle$ be two monomial ideals in $K[\underline{x}]$ and let $\underline{x}^{\gamma} \in K[\underline{x}]$ be a monomial. Show that
a. $I \cap J=\left\langle\operatorname{lcm}\left(\underline{x}^{\alpha_{i}}, \underline{x}^{\beta_{j}}\right) \mid i=1, \ldots, k ; j=1, \ldots, l\right\rangle$, and
b. I : $\underline{x}^{\gamma}=\left\langle\left.\frac{\operatorname{lcm}\left(\underline{x}^{\alpha_{i}}, \underline{x}^{\gamma}\right)}{\underline{x}^{\gamma}} \right\rvert\, i=1, \ldots, k\right\rangle$.

In particular, $I \cap J$ and $I: \underline{x}^{\gamma}$ are monomial ideals again.
Exercise 6: Let $>$ be a local ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$. Show that

$$
K\left(y_{1}, \ldots, y_{m}\right)\left[x_{1}, \ldots, x_{n}\right]_{>}=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]_{\left\langle x_{1}, \ldots, x_{n}\right\rangle} .
$$

Exercise 7: Give one possible realization of the following rings within SINGULAR:
a. $\mathbb{Q}[x, y, z]$,
b. $\mathbb{F}_{5}[x, y, z]$,
c. $\mathbb{Q}[x, y, z] /\left\langle x^{5}+y^{3}+z^{2}\right\rangle$,
d. $Q(i)[x, y]$, where i is the imaginary unit,
e. $\mathbb{F}_{27}\left[x_{1}, \ldots, x_{10}\right]_{\left\langle x_{1}, \ldots, x_{10}\right\rangle}$,
f. $\mathbb{F}_{32003}[x, y, z]_{\langle x, y, z\rangle} /\left\langle x^{5}+y^{3}+z^{2}, x y\right\rangle$,
g. $Q(t)[x, y, z]$,
h. $\left(\mathbb{Q}[t] /\left\langle t^{3}+t^{2}+1\right\rangle\right)[x, y, z]_{\langle x, y, z\rangle}$,
i. $\mathbb{Q}[x, y, z]_{\langle x, y\rangle}$.

