Fachbereich Mathematik

Computer Algebra

Due date: Monday, 21/06/2004, 10h00

Exercise 17: Let $I \unlhd K[\underline{x}]$ and $>$ a monomial ordering on $K[\underline{x}]$. Show there is an $\omega \in(\mathbb{Z} \backslash\{0\})^{n}$ such that $L_{>}(I)=L_{>_{\left(\omega,>\mathfrak{l p}_{p}\right.}}(\mathrm{I})$.

Exercise 18: Let R be a ring, $I \unlhd R, g_{0}, \ldots, g_{\imath} \in R$ and $g=\sum_{i=0}^{l} g_{i} t^{i} \in R[t]$. Show that $\mathrm{I}:\left\langle\mathrm{g}_{\mathrm{o}}, \ldots, \mathrm{g}_{\mathrm{l}}\right\rangle=(\mathrm{I} \cdot \mathrm{R}[\mathrm{t}]:\langle\mathrm{g}\rangle) \cap \mathrm{R}$.

Exercise 19: Check (by hand) whether $f=x z^{3}-2 y^{2}$ belongs to the ideal $I=$ $\left\langle x y-y, 2 x^{2}+y z, y-z\right\rangle_{R}$ for
a. $R=\mathbb{Q}[x, y, z]$, respectively
b. $R=\mathbb{Q}[x, y, z]_{\langle x, y, z\rangle}$.

Exercise 20: Write a Singular procedure standardbasis which takes as input a list consisting of polynomials f_{1}, \ldots, f_{k} and returns a standard basis of the ideal generated by f_{1}, \ldots, f_{k}.

Remark: Use the polynomial normal form PNFMora and build in the product criterion in order to speed up the computations.

