Fachbereich Mathematik Dr. Thomas Keilen

Computer Algebra

Due date: Monday, 28/06/2004, 10h00

Exercise 21: Let $I \trianglelefteq K[\underline{x}]$ be an ideal, > a global monomial ordering, and $B = Mon(\underline{x}) \cap (K[\underline{x}] \setminus L(I))$ the set of monomials which are not in the leading ideal of I. Show that B is a K-vector space basis of $K[\underline{x}]/I$.

Exercise 22: [Computation in $K[\underline{x}]/I$ via Normal Forms]

Let > be a global monomial ordering on $K[\underline{x}]$ and NF be a *reduced* normal form on $K[\underline{x}]$ w. r. t. >. Show:

- a. NF(g,G) = NF(g,G') for all $g \in K[\underline{x}]$ and for all standard bases G and G' of I. We therefore may define NF(g,I) := NF(g,G).
- b. NF(g, I) + NF(g', I) = NF(g + g', I) for all $g, g' \in K[\underline{x}]$.
- c. NF $(NF(g, I) + NF(g', I), I) = NF(g \cdot g', I)$ for all $g, g' \in K[\underline{x}]$.

Exercise 23:

- a. Change your procedure standardbasis in such a way that it takes an optional parameter. If the optional parameter is the string *"minimal"* it returns a minimal standard basis, if the optional parameter is the string *"reduced"* it returns a reduced standard basis, and if the optional parameter is missing, it just returns some standard basis as before.
- b. Write a SINGULAR procedure radicalmemebership which takes as input a polynomial g and a list of polynomials f_1, \ldots, f_k , and which returns 1 if $g \in \sqrt{\langle f_1, \ldots, f_k \rangle}$, and 0 else.

Hint, if you define the head of the procedure standardbasis as proc standardbasis (ideal G, list #), then # is an optional parameter of type list and with size(#) == 0 you can test whether it is there or not, while with #[1] you can access its entry if it is there.

Exercise 24:

- a. Write a SINGULAR procedure intersection which takes as input two lists consisting of polynomials f_1, \ldots, f_k respectively g_1, \ldots, g_l and returns a standard basis of the ideal $\langle f_1, \ldots, f_k \rangle \cap \langle g_1, \ldots, g_l \rangle$.
- b. Write a SINGULAR procedure idealquotient which takes as input two lists consisting of polynomials f_1, \ldots, f_k respectively g_1, \ldots, g_l and returns a standard basis of the ideal $\langle f_1, \ldots, f_k \rangle$: $\langle g_1, \ldots, g_l \rangle$.