Fachbereich Mathematik
Summer Semester 2004, Set 6
Dr. Thomas Keilen

Computer Algebra

Due date: Monday, 28/06/2004, 10h00
Exercise 21: Let $\mathrm{I} \unlhd \mathrm{K}[\underline{x}]$ be an ideal, $>$ a global monomial ordering, and $\mathrm{B}=$ $\operatorname{Mon}(\underline{x}) \cap(\mathrm{K}[\underline{\mathrm{x}}] \backslash \mathrm{L}(\mathrm{I}))$ the set of monomials which are not in the leading ideal of I . Show that B is a K-vector space basis of $K[\underline{x}] / I$.

Exercise 22: [Computation in $K[\underline{x}] / I$ via Normal Forms]

Let $>$ be a global monomial ordering on $K[\underline{x}]$ and $N F$ be a reduced normal form on K[x] w. r. t. >. Show:
a. $\operatorname{NF}(\mathrm{g}, \mathrm{G})=\operatorname{NF}\left(\mathrm{g}, \mathrm{G}^{\prime}\right)$ for all $\mathrm{g} \in \mathrm{K}[\underline{\mathrm{x}}]$ and for all standard bases G and G^{\prime} of I . We therefore may define $\mathrm{NF}(\mathrm{g}, \mathrm{I}):=\mathrm{NF}(\mathrm{g}, \mathrm{G})$.
b. $N F(g, I)+N F\left(g^{\prime}, I\right)=N F\left(g+g^{\prime}, I\right)$ for all $g, g^{\prime} \in K[\underline{x}]$.
c. $N F\left(N F(g, I)+N F\left(g^{\prime}, I\right), I\right)=N F\left(g \cdot g^{\prime}, I\right)$ for all $g, g^{\prime} \in K[\underline{x}]$.

Exercise 23:

a. Change your procedure standardbasis in such a way that it takes an optional parameter. If the optional paramerter is the string "minimal" it returns a minimal standard basis, if the optional parameter is the string "reduced" it returns a reduced standard basis, and if the optional parameter is missing, it just returns some standard basis as before.
b. Write a SINGULAR procedure radicalmemebership which takes as input a polynomial g and a list of polynomials f_{1}, \ldots, f_{k}, and which returns 1 if $g \in$ $\sqrt{\left\langle\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}\right\rangle}$, and 0 else.

Hint, if you define the head of the procedure standardbasis as proc standardbasis (ideal G, list \#), then \# is an optional parameter of type list and with size (\#) $==0$ you can test whether it is there or not, while with \#[1] you can access its entry if it is there.

Exercise 24:

a. Write a Singular procedure intersection which takes as input two lists consisting of polynomials f_{1}, \ldots, f_{k} respectively g_{1}, \ldots, g_{l} and returns a standard basis of the ideal $\left\langle f_{1}, \ldots, f_{k}\right\rangle \cap\left\langle g_{1}, \ldots, g_{\imath}\right\rangle$.
b. Write a Singular procedure idealquotient which takes as input two lists consisting of polynomials f_{1}, \ldots, f_{k} respectively g_{1}, \ldots, g_{l} and returns a standard basis of the ideal $\left\langle f_{1}, \ldots, f_{k}\right\rangle:\left\langle g_{1}, \ldots, g_{\imath}\right\rangle$.

