Fachbereich Mathematik Dr. Thomas Keilen

Computer Algebra

Due date: Monday, 05/07/2004, 10h00

Exercise 25: Let $>= (c, >_{dp})$ on Mon²(x, y) and $G = ((x^2, xy)^t, (x, y^2)^t)$. Compute the reduced normal form of $g = (x^2 + y^2 + 2x, y - 1)^t$ with respect to G.

Exercise 26: Let > be a global monomial ordering on $Mon(\underline{x})$, and let $M \in Mat(n \times n, K[\underline{x}])$. By $f_1, \ldots, f_n \in K[\underline{x}]^{2n}$ we denote the rows of the matrix $(M, \mathbb{1}_n)$, and $G = (g_1, \ldots, g_k)$ shall be *the* reduced standard basis of $\langle g_1, \ldots, g_k \rangle_{K[\underline{x}]} \leq K[\underline{x}]^{2n}$ w. r. t. the ordering (c, >) with $lm(g_1) > \ldots > lm(g_k)$. Show:

- a. M is invertible if and only if k = n and $lm(g_i) = e_i$ for i = 1, ..., n.
- b. If M is invertible, then the rows of $(\mathbb{1}_n, M^{-1})$ are just g_1, \ldots, g_n .

Exercise 27: Let $f, g \in K[\underline{x}]$. Express gcd(f, g) and lcm(f, g) in terms of elements in syz(f, g) and derive an algorithm to compute these, assuming we can compute a standard basis of syz(f, g).

Exercise 28: Write a SINGULAR procedure chaincriterion which takes a list of pairs of polynomials as input and eliminates pairs using the chain criterion. Then adjust your procedure standardbasis with this procedure.