Fachbereich Mathematik
Dr. Thomas Keilen

Computer Algebra

Due date: Monday, 05/07/2004, 10h00
Exercise 25: Let $>=\left(c,>_{d p}\right)$ on $\operatorname{Mon}^{2}(x, y)$ and $G=\left(\left(x^{2}, x y\right)^{t},\left(x, y^{2}\right)^{t}\right)$. Compute the reduced normal form of $g=\left(x^{2}+y^{2}+2 x, y-1\right)^{t}$ with respect to G.

Exercise 26: Let $>$ be a global monomial ordering on $\operatorname{Mon}(\underline{x})$, and let $M \in \operatorname{Mat}(n \times$ $n, K[\underline{x}])$. By $f_{1}, \ldots, f_{n} \in K[\underline{x}]^{2 n}$ we denote the rows of the matrix $\left(M, \mathbb{1}_{n}\right)$, and $G=$ $\left(g_{1}, \ldots, g_{k}\right)$ shall be the reduced standard basis of $\left\langle g_{1}, \ldots, g_{k}\right\rangle_{K[\underline{x}]} \leq K[\underline{x}]^{2 n}$ w. r. t. the ordering $(c,>)$ with $\operatorname{lm}\left(g_{1}\right)>\ldots>\operatorname{lm}\left(g_{k}\right)$. Show:
a. M is invertible if and only if $k=n$ and $\operatorname{lm}\left(g_{i}\right)=e_{i}$ for $i=1, \ldots, n$.
b. If M is invertible, then the rows of $\left(\mathbb{1}_{n}, M^{-1}\right)$ are just g_{1}, \ldots, g_{n}.

Exercise 27: Let $f, g \in K[\underline{x}]$. Express $\operatorname{gcd}(f, g)$ and $\operatorname{lcm}(f, g)$ in terms of elements in $\operatorname{syz}(f, g)$ and derive an algorithm to compute these, assuming we can compute a standard basis of $\operatorname{syz}(f, g)$.

Exercise 28: Write a SINGULAR procedure chaincriterion which takes a list of pairs of polynomials as input and eliminates pairs using the chain criterion. Then adjust your procedure standardbasis with this procedure.

