Fachbereich Mathematik

Computer Algebra

Due date: Wednesday, 22/07/2004, 10h00
Exercise 29: Let $R=\mathbb{Q}[x, y, z] /\left\langle x^{2}+y^{2}+z^{2}\right\rangle, M=R^{3} /\left\langle(x, x y, x z)^{t}\right\rangle$ and $N=R^{2} /\left\langle(1, y)^{t}\right\rangle$. Moreover, let $\varphi: M \rightarrow \mathrm{~N}$ be given by the matrix

$$
A=\left(\begin{array}{ccc}
x^{2}+1 & y & z \\
y z & 1 & -y
\end{array}\right)
$$

a. Compute $\operatorname{Ker}(\varphi)$.
b. Test if $\left(x^{2}, y^{2}\right)^{t} \in \operatorname{Im}(\varphi)$.
c. Compute $\operatorname{Im}(\varphi) \cap\left\{f \in N \mid f \equiv(h, 0) \bmod \left\langle(x, 1)^{t}\right\rangle\right.$ for some $\left.h \in R\right\}$.
d. Compute $\operatorname{ann}_{R}(\operatorname{Im}(\varphi))$.

Note, you may use Singular for your computations!
Exercise 30: Write a SINGULAR procedure noethernormalisation which takes as input an ideal I in the polynomial ring $K[\underline{x}]$ and returns a list (M, d) such that $\mathrm{K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right] \hookrightarrow \mathrm{K}[\underline{\mathrm{x}}] / \Phi_{\mathrm{M}^{-1}}(\mathrm{I})$ is a Noether normalisation.

