Fachbereich Mathematik Dr. Thomas Keilen

Computer Algebra

Due date: Wednesday, 29/07/2004, 10h00

Exercise 31: Let R be a ring, $I \leq R$, and $f, g \in R$ such that $\langle f, g \rangle = R$ and $f \cdot g \in I$. Then $I = \langle I, f \rangle \cap \langle I, g \rangle$.

Exercise 32: Let \overline{K} the algebraic closure of K, and $I \subseteq K[\underline{x}]$. Show, $I \cdot \overline{K}[\underline{x}] \cap K[\underline{x}] = I$.

Exercise 33: Let K be a field with char(K) = 0 and let $I \leq K[\underline{x}]$ with dim(K[\underline{x}]/I) = 0. Show, if $\sqrt{I \cap K[\underline{x}_i]} = \langle f_i \rangle$, then $\sqrt{I} = I + \langle f_1, \dots, f_n \rangle$.

Hint, consider a primary decomposition of $(I\langle f_1, \ldots, f_n \rangle) \cdot \overline{K}[\underline{x}]$ induced by factorizing each f_i into linear factors over \overline{K} and applying Exercise 31.

Exercise 34:

- a. Deduce from Exercise 33 an algorithm ZDRadical which computes the radical of a zero-dimensional ideal in $K[\underline{x}]$ with char(K) = 0. You may assume that we can calculate the squarefree part of a univariate polynomial (e. g. by factorizing it).
- b. Deduce an algorithm Radical for an arbitrary ideal $I \leq K[\underline{x}]$ where char(K) = 0 via reduction to dimension zero as for the primary decomposition.

Remark, for b. you need Proposition $9.20 \ \text{and} \ \text{Algorithm} \ 9.21$ from the lecture.