Fachbereich Mathematik

## Computer Algebra

Due date: Wednesday, 29/07/2004, 10h00
Exercise 31: Let $R$ be a ring, $I \unlhd R$, and $f, g \in R$ such that $\langle f, g\rangle=R$ and $f \cdot g \in I$. Then $I=\langle I, f\rangle \cap\langle I, g\rangle$.

Exercise 32: Let $\bar{K}$ the algebraic closure of $K$, and $I \unlhd K[\underline{\chi}]$. Show, $I \cdot \bar{K}[\underline{x}] \cap K[\underline{x}]=I$.
Exercise 33: Let $K$ be a field with $\operatorname{char}(\mathrm{K})=0$ and let $\mathrm{I} \unlhd \mathrm{K}[\underline{x}]$ with $\operatorname{dim}(\mathrm{K}[\underline{\mathrm{x}}] / \mathrm{I})=0$. Show, if $\sqrt{I \cap K\left[x_{i}\right]}=\left\langle f_{i}\right\rangle$, then $\sqrt{I}=I+\left\langle f_{1}, \ldots, f_{n}\right\rangle$.
Hint, consider a primary decomposition of $\left(I\left\langle f_{1}, \ldots, f_{n}\right\rangle\right) \cdot \bar{K}[\underline{x}]$ induced by factorizing each $f_{i}$ into linear factors over $\bar{K}$ and applying Exercise 31.

## Exercise 34:

a. Deduce from Exercise 33 an algorithm ZDRadical which computes the radical of a zero-dimensional ideal in $K[\underline{x}]$ with $\operatorname{char}(K)=0$. You may assume that we can calculate the squarefree part of a univariate polynomial (e. g. by factorizing it).
b. Deduce an algorithm Radical for an arbitrary ideal $\mathrm{I} \unlhd \mathrm{K}[\underline{\chi}]$ where $\operatorname{char}(\mathrm{K})=0$ via reduction to dimension zero as for the primary decomposition.

