Computer Algebra

Exercise 1: Let $I = \left\langle \underline{x}^{\alpha} \cdot e_i \mid (\alpha, i) \in \Lambda \right\rangle$ and $J = \left\langle \underline{x}^{\beta} \cdot e_j \mid (\beta, j) \in \Lambda' \right\rangle$ be two monomial submodules of $R\left[\underline{x}\right]^m$ and let $\underline{x}^{\gamma} \cdot e_k \in R\left[\underline{x}\right]^m$ be a monomial. Show that

a.
$$I \cap J = \langle lcm (\underline{x}^{\alpha} \cdot e_i, \underline{x}^{\beta} \cdot e_j) \mid (\alpha, i) \in \Lambda, (\beta, j) \in \Lambda' \rangle$$
, and

b.
$$I: \langle \underline{x}^{\gamma} \cdot e_k \rangle = \left\langle \frac{\operatorname{lcm}\left(\underline{x}^{\alpha}, \underline{x}^{\gamma}\right)}{\underline{x}^{\gamma}} \mid (\alpha, k) \in \Lambda \right\rangle$$
.

Exercise 2: Let > be any monomial ordering on Mon_n.

a. Show that for a fixed $w = (w_1, \dots, w_n) \in \mathbb{R}^n$ the following defines a monomial ordering on Mon_n :

$$\underline{x}^{\alpha} >_{(w,>)} \underline{x}^{\beta} : \iff \langle w, \alpha \rangle > \langle w, \beta \rangle, \text{ or } (\langle w, \alpha \rangle = \langle w, \beta \rangle \text{ and } \underline{x}^{\alpha} > \underline{x}^{\beta}).$$

Under which assumptions is the above definition independent of the chosen ordering >?

b. Let $A \in Gl_n(\mathbb{Q})$ be an invertible $n \times n$ -matrix over the rational numbers. Show that the following defines a monomial ordering on Mon_n :

$$\underline{x}^{\alpha} >_{(A,>)} \underline{x}^{\beta} :\iff \underline{x}^{A\alpha} > \underline{x}^{A\beta}.$$

Exercise 3: Determine matrices $A \in Gl_n(\mathbb{R})$ which define the following orderings:

- a. $(>_{lp},>_{ds})$, here $n=n_1+n_2$ with n_1 variables for lp and n_2 for ds;
- b. $(>_{dp},>_{ls})$, here $n=n_1+n_2$ with n_1 variables for dp and n_2 for ls;
- c. $>_{wp(5,3,4)}$, here n = 3;
- d. $>_{ws(5,3,4)}$, here n = 3.

Exercise 4: We define the *degree lexicographical ordering* $>_{Dp}$ on Mon_n by

$$\underline{x}^{\alpha}>_{Wp}\underline{x}^{\beta}\iff |\alpha|>|\beta| \text{ or } (|\alpha|=|\beta| \text{ and } \exists \ k \ : \ \alpha_1=\beta_1,\ldots,\alpha_{k-1}=\beta_{k-1},\alpha_k>\beta_k).$$

Show that the orderings $>_{lp}$, $>_{Dp}$ and $>_{dp}$ are described by the following characterising properties. Let > be a monomial ordering on Mon_n , then:

- a. $>=>_{lp}$ if and only if > is an elimination ordering for $\{x_1,\ldots,x_k\}$ for all $k=1,\ldots,n-1$, i. e. if $lm(f)\in R[x_{k+1},\ldots,x_n]$ implies $f\in R[x_{k+1},\ldots,x_n]$.
- b. $>=>_{Dp}$ if and only if > is a degree ordering and for any homogeneous $f \in R[\underline{x}]$ with $lm(f) \in R[x_k, \ldots, x_n]$ we have $f \in R[x_k, \ldots, x_n]$, $k = 1, \ldots, n$.
- c. $>=>_{dp}$ if and only if > is a degree ordering and for any homogeneous $f \in R[\underline{x}]$ with $lm(f) \in \langle x_k, \ldots, x_n \rangle$ we have $f \in \langle x_k, \ldots, x_n \rangle$, $k = 1, \ldots, n$.