Fachbereich Mathematik
Dr. Thomas Markwig

Computer Algebra

Exercise 21: Let $\mathrm{I} \unlhd \mathrm{K}[\underline{x}]$ be an ideal, $>$ a global monomial ordering, and $\mathrm{B}=$ $\operatorname{Mon}(\underline{x}) \cap(\mathrm{K}[\underline{x}] \backslash \mathrm{L}(\mathrm{I}))$ the set of monomials which are not in the leading ideal of I . Show that B is a K-vector space basis of $K[\underline{x}] / I$.

Exercise 22: [Computation in $K[\underline{x}] / I$ via Normal Forms]

Let $>$ be a global monomial ordering on $\operatorname{Mon}_{n}^{m}, \mathrm{~g} \in \mathrm{~K}[\underline{x}]^{m}$ and $\mathrm{I} \leq \mathrm{K}[\underline{x}]^{m}$.
a. If G and G^{\prime} are two standard bases of I w.r.t. $>$ and $r \in K[\underline{x}]^{m}$ respectively $r^{\prime} \in K[\underline{x}]^{m}$ is the remainder of a reduced standard representation of g w.r.t. G respectively G^{\prime}, then $r=r^{\prime}$.

We may therefore call $\mathrm{NF}(\mathrm{g}, \mathrm{I}):=\mathrm{r}$ the normal form of g w.r.t. I and $>$.
b. $N F(g, I)+N F\left(g^{\prime}, I\right)=N F\left(g+g^{\prime}, I\right)$ for all $g, g^{\prime} \in K[\underline{x}]$.
c. $N F\left(N F(g, I) \cdot N F\left(g^{\prime}, I\right), I\right)=N F\left(g \cdot g^{\prime}, I\right)$ for all $g, g^{\prime} \in K[\underline{x}]$.

Exercise 23: Write a SINGULAR procedure intersection which takes as input two lists consisting of polynomials f_{1}, \ldots, f_{k} respectively $g_{1}, \ldots, g_{\imath}$ and returns a standard basis of the ideal $\left\langle f_{1}, \ldots, f_{k}\right\rangle \cap\left\langle g_{1}, \ldots, g_{\imath}\right\rangle$.

Exercise 24: Write a SINGULAR procedure idealquotient which takes as input two lists consisting of polynomials f_{1}, \ldots, f_{k} respectively g_{1}, \ldots, g_{l} and returns a standard basis of the ideal $\left\langle f_{1}, \ldots, f_{k}\right\rangle:\left\langle g_{1}, \ldots, g_{l}\right\rangle$.

