Fachbereich Mathematik Dr. Thomas Markwig

Computer Algebra

Exercise 25: Let > be a global monomial ordering on $Mon(\underline{x})$, and let $M \in Mat(n \times n, K[\underline{x}])$. By $f_1, \ldots, f_n \in K[\underline{x}]^{2n}$ we denote the rows of the matrix $(M, \mathbb{1}_n)$, and $G = (g_1, \ldots, g_k)$ shall be *the* reduced standard basis of $\langle f_1, \ldots, f_k \rangle_{K[\underline{x}]} \leq K[\underline{x}]^{2n}$ w. r. t. the ordering (c, >) with $lm(g_1) > \ldots > lm(g_k)$. Show:

- a. M is invertible if and only if k = n and $lm(g_i) = e_i$ for i = 1, ..., n.
- b. If M is invertible, then the rows of $(\mathbb{1}_n, M^{-1})$ are just g_1, \ldots, g_n .

Exercise 26: Let $f, g \in K[\underline{x}]$. Express gcd(f,g) and lcm(f,g) in terms of elements in syz(f,g) and derive an algorithm to compute these, assuming we can compute a standard basis of syz(f,g).

Exercise 27: Let $R = \mathbb{Q}[x, y, z]/\langle x^2 + y^2 + z^2 \rangle$, $M = R^3/\langle (x, xy, xz)^t \rangle$ and $N = R^2/\langle (1, y)^t \rangle$. Moreover, let $\varphi : M \to N$ be given by the matrix

$$A = \left(\begin{array}{rrr} x^2 + 1 & y & z \\ yz & 1 & -y \end{array}\right).$$

- a. Compute $\text{Ker}(\varphi)$.
- b. Test if $(x^2, y^2)^t \in Im(\phi)$.
- c. Compute $\text{Im}(\varphi) \cap \{f \in \mathbb{N} \mid f \equiv (h, 0) \text{mod } \langle (x, 1)^t \rangle \text{ for some } h \in \mathbb{R} \}.$
- d. Compute $\operatorname{ann}_{R}(\operatorname{Im}(\varphi))$.

Note, you may use Singular for your computations!

Exercise 28: Write a SINGULAR procedure chaincriterion which takes a list of pairs of polynomials as input and eliminates pairs using the chain criterion. Then adjust your procedure standardbasis with this procedure.