Fachbereich Mathematik

Computer Algebra

Exercise 25: Let $>$ be a global monomial ordering on $\operatorname{Mon}(\underline{x})$, and let $M \in \operatorname{Mat}(n \times$ $n, K[\underline{x}])$. By $f_{1}, \ldots, f_{n} \in K[\underline{x}]^{2 n}$ we denote the rows of the matrix $\left(M, \mathbb{1}_{n}\right)$, and $G=$ $\left(g_{1}, \ldots, g_{k}\right)$ shall be the reduced standard basis of $\left\langle f_{1}, \ldots, f_{k}\right\rangle_{K[\underline{x}]} \leq K[\underline{x}]^{2 n}$ w. r. t. the ordering $(\mathrm{c},>)$ with $\operatorname{lm}\left(\mathrm{g}_{1}\right)>\ldots>\operatorname{lm}\left(\mathrm{g}_{\mathrm{k}}\right)$. Show:
a. M is invertible if and only if $k=n$ and $\operatorname{lm}\left(g_{i}\right)=e_{i}$ for $i=1, \ldots, n$.
b. If M is invertible, then the rows of $\left(\mathbb{1}_{n}, M^{-1}\right)$ are just g_{1}, \ldots, g_{n}.

Exercise 26: Let $f, g \in K[\underline{x}]$. Express $\operatorname{gcd}(f, g)$ and $\operatorname{lcm}(f, g)$ in terms of elements in $\operatorname{syz}(f, g)$ and derive an algorithm to compute these, assuming we can compute a standard basis of $\operatorname{syz}(f, g)$.

Exercise 27: Let $R=\mathbb{Q}[x, y, z] /\left\langle x^{2}+y^{2}+z^{2}\right\rangle, M=R^{3} /\left\langle(x, x y, x z)^{t}\right\rangle$ and $N=R^{2} /\left\langle(1, y)^{t}\right\rangle$. Moreover, let $\varphi: M \rightarrow N$ be given by the matrix

$$
A=\left(\begin{array}{ccc}
x^{2}+1 & y & z \\
y z & 1 & -y
\end{array}\right)
$$

a. Compute $\operatorname{Ker}(\varphi)$.
b. Test if $\left(x^{2}, y^{2}\right)^{t} \in \operatorname{Im}(\varphi)$.
c. Compute $\operatorname{Im}(\varphi) \cap\left\{f \in N \mid f \equiv(h, 0) \bmod \left\langle(x, 1)^{t}\right\rangle\right.$ for some $\left.h \in R\right\}$.
d. Compute $\operatorname{ann}_{R}(\operatorname{Im}(\varphi))$.

Note, you may use Singular for your computations!
Exercise 28: Write a SINGULAR procedure chaincriterion which takes a list of pairs of polynomials as input and eliminates pairs using the chain criterion. Then adjust your procedure standardbasis with this procedure.

