Fachbereich Mathematik Thomas Markwig

Commutative Algebra

Exercise 8: Let R be a ring such that for every $r \in R$ there is an n = n(r) > 1 such that $r^n = r$.

- a. Show that $Spec(R) = \mathfrak{m} Spec(R)$.
- b. Give an example of such a ring R which is not a field.

Exercise 9: Let $R \neq 0$ be a ring. Show that Spec(R) has a minimal element with respect to inclusion, i. e. $\exists \ P_0 \in Spec(R) : \forall \ P \in Spec(R)$ with $P \subseteq P_0$ we have $P = P_0$. Hint, use Zorn's Lemma with a suitable partial ordering on the set of all prime ideals.

Exercise 10: Let R be a ring and N(R) its nil-radical. Show the following are equivalent:

- a. R/N(R) is a field.
- b. |Spec(R)| = 1.
- c. Every element of R is either a unit or nilpotent.

Give an example for such a ring which is not a field.

Exercise 11: Let $d \in \mathbb{Z}$ be a squarefree, negative integer. Show that $\mathbb{Z}[\sqrt{d}]$ is a UFD if and only if $d \in \{-1, -2\}$.

Hint, show that 2 is not a prime, but if d < -2 it is irreducible. For the "non-primeness" note that either $2 \mid d$ or $2 \mid d-1$, and note that in $\mathbb{Q}\lceil \sqrt{d} \rceil$ every element is *uniquely* expressible as $\alpha + b \cdot \sqrt{d}$ – why?

In-Class Exercise 7:

- a. Find a prime factorisation of 11 in $\mathbb{Z}[\sqrt{-2}]$. (Use known results for elementary number theory!)
- b. $9 = 3 \cdot 3 = (1 + 2 \cdot \sqrt{-2}) \cdot (1 2 \cdot \sqrt{-2})$. How does this fit with the result from Exercise 11?

In-Class Exercise 8: Which of the following ideals I in $\mathbb{Z}[x]$ is a maximal ideal?

a.
$$I = \langle 5, 11x^3 + x - 1 \rangle$$
.

b.
$$I = \langle 4, x^2 + x + 1, x^2 + x - 1 \rangle$$
.

How many elements does the corresponding field $\mathbb{Z}[x]/I$ have?

In-Class Exercise 9: Let K be any field. Show that $x^2 - y^3 \in K[x, y]$ is irreducible.