Commutative Algebra

Exercise 12: Let M be an R-module.
a. Prove that $\mu: M \rightarrow \operatorname{Hom}_{R}(R, M)$ with $\mu(m): R \rightarrow M: r \mapsto r \cdot m$ is an isomorphism.
b. Give an example where $M \neq \operatorname{Hom}_{R}(M, R)$.

Exercise 13: Let R be an integral domain and $0 \neq I \unlhd R$.
Show that I as R-module is free if and only if I is principal.
Exercise 14: Let $R=\mathbb{R}[[x]]$ be the ring of formal power series over the real numbers. Consider the R-linear map $\varphi: R^{3} \rightarrow R^{2}: m \mapsto A \cdot m$ where

$$
A=\left(\begin{array}{ccc}
1+x^{4}-x^{7}+3 x^{100} & \cos (x) & 2-\exp (x) \\
x^{4}-5 x^{8} & \sum_{i=0}^{\infty}\left(5 x+x^{2}\right)^{i} & 0
\end{array}\right) \in \operatorname{Mat}(2 \times 3, R)
$$

Is φ an epimorphism?
Exercise 15: Let $p \in \mathbb{Z}$ be a prime number. Consider the subring $R=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in\right.$ $\mathbb{Z}, p \quad \Varangle \mathrm{~b}\} \leq \mathbb{Q}$ of the rational numbers, and consider $M=\mathbb{Q}$ as an R-module.
a. Show that R is local with maximal ideal $\mathfrak{m}=\left\{\frac{a}{b}|a, b \in \mathbb{Z}, p \nmid b, p| a\right\}$.
b. $\mathfrak{m} \cdot M=M$, but $M \neq 0$.
c. Find a set of generators for M.

In-Class Exercise 10: Consider $R=\mathbb{R}[x, y, z]$ and $M=\langle x y, x z, y z\rangle$. Find a polynomial $F \in R[t]$ such that $F(\varphi)=0$ where is the restriction to M of the map

$$
R \longrightarrow R: f \mapsto f \cdot(x+y+z)
$$

In-Class Exercise 11: What is the K-vector space dimension of the cokernel of the $K[x]$-linear map $\varphi: K[x]^{2} \longrightarrow K[x]^{2}:(a, b) \mapsto\left(a+b, x^{2} \cdot b\right)$?

