Commutative Algebra

Exercise 20: Suppose that (R, \mathfrak{m}) is local ring and that $M \oplus R^{m} \cong R^{n}$ for some $n \geq m$. Show that then $M \cong R^{n-m}$.

Exercise 21: Let R^{\prime} be an R-algebra and M and N be R-modules. Show that there is an isomorphism of R^{\prime}-modules

$$
\Phi:\left(M \otimes_{R} N\right) \otimes_{R} R^{\prime} \longrightarrow\left(M \otimes_{R} R^{\prime}\right) \otimes_{R^{\prime}}\left(N \otimes_{R} R^{\prime}\right): m \otimes n \otimes r^{\prime} \mapsto\left(m \otimes r^{\prime}\right) \otimes(n \otimes 1) .
$$

Recall that $M \otimes R R^{\prime}$ is an $R^{\prime}-$ module via $r^{\prime} \cdot\left(m \otimes s^{\prime}\right):=m \otimes\left(r^{\prime} \cdot s^{\prime}\right)$.
Exercise 22: Let (R, \mathfrak{m}) be a local ring, and M and N be finitely generated R modules. Show that $M \otimes N=0$ if and only if $M=0$ or $N=0$.

Hint, use Exercise 21 and Nakayama's Lemma.
Exercise 23: Let R be a ring, M and N be R-modules, and suppose $N=\left\langle n_{\lambda} \mid \lambda \in \Lambda\right\rangle$. Show:
a. $M \otimes_{R} N=\left\{\sum_{\lambda \in \Lambda} m_{\lambda} \otimes n_{\lambda} \mid m_{\lambda} \in M\right.$ and only finitely many $\left.m_{\lambda} \neq 0\right\}$.
b. Let $x=\sum_{\lambda \in \Lambda} m_{\lambda} \otimes n_{\lambda} \in M \otimes_{R} N$ with $m_{\lambda} \in M$ and only finitely many $m_{\lambda} \neq 0$. Then $x=0$ if and only if there exist $m_{\theta}^{\prime} \in M$ and $a_{\lambda, \theta} \in R, \theta \in \Theta$ some index set, such that

$$
\mathfrak{m}_{\lambda}=\sum_{\theta \in \Theta} a_{\lambda, \theta} \cdot \mathfrak{m}_{\theta}^{\prime} \quad \text { for all } \quad \lambda \in \Lambda
$$

and

$$
\sum_{\lambda \in \Lambda} a_{\lambda, \theta} \cdot n_{\lambda}=0 \quad \text { for all } \quad \theta \in \Theta .
$$

Hint, for part b. consider first the case that N is free in the ($n_{\lambda} \mid \lambda \in \Lambda$) and show that in that case actually all m_{λ} are zero. Then consider a free presentation $\bigoplus_{\theta \in \Theta} R \rightarrow \bigoplus_{\lambda \in \Lambda} R \rightarrow N \rightarrow 0$ of N and tensorize this with M.

In-Class Exercise 13:

a. Consider the \mathbb{Z}-modules $M=\mathbb{Z} / 2 \mathbb{Z}$ and $N=\mathbb{Z} / 4 \mathbb{Z}$. How many elements does $M \otimes_{\mathbb{Z}} N$ have? Is it isomorphic to a \mathbb{Z}-module that you know?
b. Consider the \mathbb{Z}-module $M=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z}$ and the \mathbb{Q}-vector space $M \otimes_{\mathbb{Z}} Q$. What is its dimension?

In-Class Exercise 14: Let K be a field. Is the K-vector space $K[x] \otimes_{K} K[y]$ isomorphic to a K-vector space that you know very well? Can you define a multiplication on the tensor product, such that it becomes a K-algebra that you know?

