Commutative Algebra

Exercise 24: Let $S \subseteq R$ be a multiplicatively closed subset, and consider the ring extension $i: R \rightarrow S^{-1} R: r \mapsto \frac{r}{1}$. Show that

$$
\{P \in \operatorname{Spec}(R) \mid S \cap P=\emptyset\} \longrightarrow \operatorname{Spec}\left(S^{-1} R\right): P \mapsto P^{e}=S^{-1} P
$$

is bijective with inverse

$$
\operatorname{Spec}\left(S^{-1} R\right) \longrightarrow\{P \in \operatorname{Spec}(R) \mid S \cap P=\emptyset\}: Q \mapsto Q^{c}=i^{-1}(Q) .
$$

In particular, for prime ideals $P \in \operatorname{Spec}(R)$ we have $\left(P^{e}\right)^{c}=P$.

Exercise 25:

a. Let K be a field, $R=K[x, y, z] /\langle x z, y z\rangle$ and $P=\langle x, y, z-1\rangle \unlhd R$. Show $R_{P} \cong K[z]_{\langle z-1\rangle}$.
b. Let R be a ring, $f \in R$ a non-zero-divisor. Show $R_{f} \cong R[x] /\langle f x-1\rangle$.

Exercise 26: Let R be a ring and $\mathcal{N}(R)$ its nilradical. Show:
a. If $S \subseteq R$ multiplicatively closed, then $\mathcal{N}\left(S^{-1} R\right)=S^{-1} \mathcal{N}(R)$.
b. A ring is called reduced if it has no nilpotent elements except 0 . Show that "being reduced" is a local property, i.e. the following are equivalent:
(1) R is reduced.
(2) R_{P} is reduced for each $P \in \operatorname{Spec}(R)$.
(3) R_{m} is reduced for each $\mathfrak{m} \triangleleft \cdot R$.
c. Show that "being flat" is a local property, i.e. if M is an R-module, then the following are equivalent:
(1) M is a flat R-module.
(2) M_{P} is a flat R_{P} module for each $P \in \operatorname{Spec}(R)$.
(3) $M_{\mathfrak{m}}$ is a flat $R_{\mathfrak{m}}$ module for each $\mathfrak{m} \triangleleft \cdot R$.

Hint for part c., use Exercise 21 and note that any R_{P}-module N is also an R-module and that $N_{p}=N$.
Exercise 27: Let $\mathrm{I}:=\langle 2,1+\sqrt{-5}\rangle \triangleleft \mathbb{Z}[\sqrt{-5}]$. Show that I as an R -module is projective, but not free.

Hint, note that $2 \in I \cdot I$. Use this to show that $I \neq\langle x\rangle$ for any x, while for any prime P containing I we have I_{P} is generated by $1+\sqrt{-5}$. For the last statement use Nakayama's Lemma in a sensible way!

In-Class Exercise 15: Let $R=K[x, y]$ and $P=K[x, y, z] /\langle x z-x, y z-y-z+1\rangle$. Is P a flat R-module?
In-Class Exercise 16: Let $\mathfrak{m}=\langle x, y\rangle \triangleleft \mathrm{K}[x, y]$. Localize the ring R and the module P in In-Class Exercise 15 at \mathfrak{m}. Is the resulting module $P_{\mathfrak{m}}$ a flat $R_{\mathfrak{m}}$-module?

