Fachbereich Mathematik Thomas Markwig

Commutative Algebra

Exercise 36: Let R be a noetherian integral domain, which is not a field, such that each ideal is a finite product of prime ideals.

Show that R is a PID if and only if R is a UFD and dim(R) = 1.

Note, a noetherian ID of dimension one where each ideal is a product of primes is called a Dedekind domain and has by Exercise 32 "unique prime factorisation" for ideals!

Exercise 37: Give an example of a ring R with two "maximal" chains of prime ideals of different length.

Exercise 38: Let K be a field and \overline{K} its algebraic closure and let $f \in K[x_1, \ldots, x_n]$.

- a. Show that $\overline{K}[x_1, \ldots, x_n]$ is integral over $K[x_1, \ldots, x_n]$.
- b. Show that $f \cdot \overline{K}[x_1, \ldots, x_n] \cap K[x_1, \ldots, x_n] = f \cdot K[x_1, \ldots, x_n]$.
- c. Show that $\overline{K}[x_1, \ldots, x_n]/\langle f \rangle$ is integral over $K[x_1, \ldots, x_n]/\langle f \rangle$.

Hint, in part b. one may use the monomial ordering from Exercise 39 c.

Exercise 39: [Rings of Invariants]

Let G be a *finite* group and $R = K[\underline{x}]/I$ a finitely generated K-algebra, $G \to Aut_{K-alg}(R)$ a group homomorphism (we say that G *acts* on R via K-algebra automorphisms), and write $g \cdot f := \alpha(g)(f)$ for $g \in G$ and $f \in R$. Moreover, consider $R^G = \{f \in R \mid g \cdot f = f \forall g \in G\}$, the *ring of invariants of G in R*.

- a. Show that R is integral over R^{G} .
- b. Show that R^G is a finitely generated K-algebra, hence noetherian.
- c. Let $Mon(\underline{x}) = \{0\} \cup \{\underline{x}^{\alpha} \mid \alpha \in \mathbb{N}^n\}$, $Mon(f) = \{\underline{x}^{\alpha} \mid a_{\alpha} \neq 0\}$ for $0 \neq f = \sum_{\alpha} a_{\alpha} \underline{x}^{\alpha} \in K[\underline{x}]$ and $Mon(0) = \{0\}$. We define a *well-ordering* on $Mon(\underline{x})$ by $\underline{x}^{\alpha} > 0$ for all α and

$$\underline{x}^{\alpha} > \underline{x}^{\beta} \iff deg(\underline{x}^{\alpha}) > deg(\underline{x}^{\beta}) \text{ or } \\ (deg(\underline{x}^{\alpha}) = deg(\underline{x}^{\beta}) \text{ and } \exists i : \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i > \beta_i),$$

and we call lm(f) = max(Mon(f)) the leading monomial of f.

Show, $(\underline{x}^{\alpha} > \underline{x}^{\beta} \implies \underline{x}^{\alpha} \cdot \underline{x}^{\gamma} > \underline{x}^{\beta} \cdot \underline{x}^{\gamma})$, and thus $lm(f \cdot g) = lm(f) \cdot lm(g)$.

d. Consider the group homomorphism

$$\mathbf{Sym}(\mathfrak{n}) \longrightarrow \mathbf{Aut}_{\mathsf{K-alg}} \left(\mathsf{K}[\mathsf{x}_1, \ldots, \mathsf{x}_n] \right) : \sigma \mapsto (\mathsf{f} \mapsto \mathsf{f}(\mathsf{x}_{\sigma(1)}, \ldots, \mathsf{x}_{\sigma(n)}),$$

and the polynomial $(X + x_1) \cdots (X + x_n) = X^n + s_1 X^{n-1} + \ldots + s_n \in K[x_1, \ldots, x_n][X]$. Show, $K[x_1, \ldots, x_n]^{\text{Sym}(n)} = K[s_1, \ldots, s_n]$.

Hint, use Exercise 28 to solve part b., for part d. show first that $\underline{x}^{\alpha} = \operatorname{Im}(f)$ for $f \in K[x_1, \ldots, x_n]^{Sym(n)}$ implies $\alpha_1 \ge \ldots \ge \alpha_n$, and deduce that there is a $g \in K[s_1, \ldots, s_n]$ such that $\operatorname{Im}(f) = \operatorname{Im}(g)$. Use this to do induction on $\operatorname{Im}(f)$ in order to show that actually $f \in K[s_1, \ldots, s_n]$. Note that $s_i = \sum_{\substack{1 \le i_1 \le \ldots \le i_i \le n}} x_{j_1} \cdots x_{j_i}$, so what is $\operatorname{Im}(s_i)$?

In-Class Exercise 22: Let $R = K[x, y, z]_{\langle x, y, z \rangle}$, $I = \langle x^2 - y^2, xz - y \rangle$, $J = \langle x^2 - y^2, xz - yz \rangle$. Compute dim(R/I) and dim(R/J).