Commutative Algebra

Exercise 43:

a. Show that every maximal ideal in $\mathbb{Z}[x]$ can generated by a prime number $p \in \mathbb{Z}$ and a polynomial $f \in \mathbb{Z}[x]$ such that its residue class in $\mathbb{Z}_{p}[x]$ is irreducible.
b. Show that $\operatorname{dim}(\mathbb{Z}[x])=2$.

Hint, show in a. first that a maximal ideal cannot be principal, then that it contains a prime number and finally that modulo that prime number it will be generated by a single polynomial. Recall that $\mathbb{Z}[x] /\langle p\rangle \cong \mathbb{Z}_{p}[x]$ is a PID and that in $\mathbb{Q}[x]$ the Bézout identity holds.

Exercise 44: Let $K \subseteq K^{\prime}$ be a field extension, and let $T \subset K^{\prime}$ (possibly infinite). T is called algebraically independent over K if every finite subset of T is algebraically independent over K . And an algebraically independent set T is a transcendence basis of K^{\prime} / K if $T \cup\left\{t^{\prime}\right\}$ is algebraically dependent for every $t^{\prime} \in K^{\prime} \backslash T$. Show:
a. An algebraically independent set T is a transcendence basis of K^{\prime} / K if and only K^{\prime} is integral over

$$
K(T)=\left\{\left.\frac{f\left(t_{1}, \ldots, t_{n}\right)}{g\left(t_{1}, \ldots, t_{n}\right)} \right\rvert\, f, g \in K\left[x_{1}, \ldots, x_{n}\right], g \neq 0, t_{1}, \ldots, t_{n} \in T, n \geq 1\right\} .
$$

b. If T and T^{\prime} are transcendence bases of K^{\prime} / K and $t \in T$, then there is a $t^{\prime} \in T^{\prime}$ such that $(T \backslash\{t\}) \cup\left\{t^{\prime}\right\}$ is a transcendence basis of K^{\prime} / K.
c. If T and T^{\prime} are transcendence bases of $K^{\prime} / K,|T|<\infty$, then $\operatorname{trdeg}_{K}\left(K^{\prime}\right)=|T|=\left|T^{\prime}\right|$.
d. $\operatorname{trdeg}_{K}\left(K\left(x_{1}, \ldots, x_{n}\right)\right)=n$.

Hint for part b., if $T_{0}=T \backslash\{t\}$, then consider the field extensions $K\left(T_{0}\right) \subset K^{\prime}, K\left(T^{\prime} \cup T_{0}\right) \subset K^{\prime}$ and $K\left(T_{0}\right) \subset K\left(T^{\prime} \cup T_{0}\right)=K\left(T_{0}\right)\left(T^{\prime}\right)$. Which of these are integral (which is the same as algebraic)?

Exercise 45: Find a Noether normalisation of $R=K[x, y] /\left\langle x^{3}-y^{2}\right\rangle$ and compute the normalisation of R.

Exercise 46: Let R be a finitely generated K -algebra which is an integral domain and let $K^{\prime}=\operatorname{Quot}(R)$. Show that:
a. If $\beta_{1}, \ldots, \beta_{d} \in R$ are algebraically independent over K and R is algebraic over $K\left[\beta_{1}, \ldots, \beta_{d}\right]$, then $\operatorname{Quot}(R)$ is algebraic over $K\left(\beta_{1}, \ldots, \beta_{d}\right)$.
b. $\operatorname{trdeg}_{K}(\mathrm{R})=\operatorname{trdeg}_{\kappa}\left(\mathrm{K}^{\prime}\right)$.

In-Class Exercise 24: Find all maximal ideals in $\mathbb{C}[x, y] /\left\langle x^{3}-x^{2}, x^{2} y-2 x^{2}\right\rangle$.
In-Class Exercise 25: $\operatorname{Compute} \operatorname{Quot}(R)$ and $\operatorname{dim}(\operatorname{Guot}(R))$ for $R=K[x, y] /\left\langle x^{2}, x y\right\rangle$.

