Commutative Algebra

Exercise 47: Prove the Algebraic HNS (Theorem 7.1) using Noether-Normalisation.

Exercise 48: Let R be a ring. Show that $\operatorname{dim}(R[x]) \geq \operatorname{dim}(R)+1$.
Hint, consider ideals of the form $I[x]=\left\{\sum_{i=0}^{n} a_{i} x^{i} \mid n \geq 0, a_{i} \in I\right\}$ for some ideal $I \unlhd R$. - Note, if R is noetherian one can actually show equality, but that is much harder.

Exercise 49: Let R be an integral domain. Show:
a. R is a valuation ring if and only if for two ideals $\mathrm{I}, \mathrm{J} \unlhd \mathrm{R}$ we have I $\subseteq \mathrm{J}$ or $\mathrm{J} \subseteq \mathrm{I}$.
b. If R is a valuation ring and $P \in \operatorname{Spec}(R)$, then R_{P} and R / P are valuation rings.

Exercise 50: [A valuation on the field $K\{\{t\}\}]$

Let $K\{\{t\}\}$ be the field from Exercise 3.
a. Show that ord : $\left(\operatorname{K}\{\{\mathrm{t}\}\}^{*}, *\right) \rightarrow(\mathbb{R},+): f \mapsto \min \{\alpha \in \mathbb{R} \mid f(\alpha) \neq 0\}$ is a valuation.
b. $R_{\text {ord }}$ is not noetherian, hence ord is not discrete, but $\operatorname{dim}\left(R_{\text {ord }}\right)=1$.
c. If $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$ are algebraically independent over \mathbb{Q}, then ($t^{\alpha_{1}}, \ldots, t^{\alpha_{n}}$) are algebraically independent over K. In particular, $\operatorname{trdeg}_{K}(\mathrm{~K}\{\{\mathrm{t}\}\})=\infty$.

Hint for part b., note that $\mathfrak{m}_{R_{\text {ord }}}=\left\langle t^{\alpha} \mid \alpha>0\right\rangle$, where $t^{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $t^{\alpha}(\alpha)=1$ and $t^{\alpha}(\beta)=0$ for $\beta \neq \alpha$.
In-Class Exercise 26: Compute the dimension of $K[x, y, z]_{\left\langle x^{2}-y z\right\rangle}$.
In-Class Exercise 27: Is the ring $\mathbb{C}[x, y] /\left\langle x^{2}-y^{2}-y^{3}\right\rangle$ a Dedekind domain?
In-Class Exercise 28: Is the ring $\mathbb{C}[x, y] /\left\langle x-y^{2}-y^{3}\right\rangle$ a Dedekind domain?

