Fachbereich Mathematik Thomas Markwig

Commutative Algebra

Exercise 47: Prove the Algebraic HNS (Theorem 7.1) using Noether-Normalisation.

Exercise 48: Let R be a ring. Show that $\dim(R[x]) \ge \dim(R) + 1$.

Hint, consider ideals of the form $I[x] = \left\{ \sum_{i=0}^{n} \alpha_i x^i \mid n \ge 0, \alpha_i \in I \right\}$ for some ideal $I \le R$. – Note, if R is noetherian one can actually show equality, but that is much harder.

Exercise 49: Let R be an integral domain. Show:

- a. R is a valuation ring if and only if for two ideals $I, J \leq R$ we have $I \subseteq J$ or $J \subseteq I$.
- b. If R is a valuation ring and $P \in \operatorname{Spec}(R)$, then R_P and R/P are valuation rings.

Exercise 50: [A valuation on the field $K{\{t\}}$]

Let $K{\{t\}}$ be the field from Exercise 3.

- a. Show that ord : $(K\{\{t\}\}^*, *) \to (\mathbb{R}, +) : f \mapsto \min\{\alpha \in \mathbb{R} \mid f(\alpha) \neq 0\}$ is a valuation.
- b. R_{ord} is not noetherian, hence ord is not discrete, but $dim(R_{ord}) = 1$.
- c. If $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ are algebraically independent over \mathbb{Q} , then $(t^{\alpha_1}, \ldots, t^{\alpha_n})$ are algebraically independent over K. In particular, $trdeg_K(K\{\{t\}\}) = \infty$.

 $\text{Hint for part b., note that } \mathfrak{m}_{R_{\text{ord}}} = \langle t^{\alpha} \mid \alpha > 0 \rangle \text{, where } t^{\alpha} : \mathbb{R} \rightarrow \mathbb{R} \text{ satisfies } t^{\alpha}(\alpha) = 1 \text{ and } t^{\alpha}(\beta) = 0 \text{ for } \beta \neq \alpha.$

In-Class Exercise 26: Compute the dimension of $K[x, y, z]_{(x^2-yz)}$.

In-Class Exercise 27: Is the ring $\mathbb{C}[x, y]/\langle x^2 - y^2 - y^3 \rangle$ a Dedekind domain?

In-Class Exercise 28: Is the ring $\mathbb{C}[x, y]/\langle x - y^2 - y^3 \rangle$ a Dedekind domain?