Fachbereich Mathematik Dr. Thomas Keilen

Commutative Algebra

Due date: Monday, 15/11/2004, 14h00

Only exercises 1-3 should be handed in.

Exercise 5: Let R be a ring such that for every $r \in R$ there is an n = n(r) > 1 such that $r^n = r$.

- a. Show that $\operatorname{Spec}(R) = \mathfrak{m} \operatorname{Spec}(R)$.
- b. Give an example of such a ring R which is not a field.

Exercise 6: Let $R \neq 0$ be a ring. Show that Spec(R) has a minimal element with respect to inclusion, i. e. $\exists P_0 \in \text{Spec}(R) : \forall P \in \text{Spec}(R)$ with $P \subseteq P_0$ we have $P = P_0$.

Exercise 7: Let R be a ring and N(R) its nil-radical. Show the following are equivalent:

a. R/N(R) is a field.

b.
$$|\text{Spec}(R)| = 1$$
.

c. Every element of R is either unit or nilpotent.

Give an example for such a ring which is not a field.

Exercise 8: [Zariski Topology] - Will be discussed in the example class.

Let R be a ring. For a subset $A \subset R$ we define the *vanishing set* of A as

$$V(A) := \{ P \in \mathbf{Spec}(R) \mid A \subseteq P \} \subseteq \mathbf{Spec}(R).$$

Show that the set $T := \{V(A) \mid A \subseteq R\}$ defines a topology on Spec(R) in the sense that T is the set of closed subsets of Spec(R).

To see this you should show the following:

- a. $V(A) = V(\langle A \rangle) = V(\sqrt{\langle A \rangle})$ for any $A \subseteq R$. In particular, $T = \{V(I) \mid I \leq R\}$.
- b. $V(0) = \operatorname{Spec}(R)$.
- c. $V(R) = \emptyset$.
- d. $V(I) \cup V(J) = V(I \cdot J) = V(I \cap J)$ for $I, J \trianglelefteq R$.
- e. $\bigcap_{\lambda \in \Lambda} V(I_{\lambda}) = V(\sum_{\lambda \in \Lambda} I_{\lambda})$ for $I_{\lambda} \trianglelefteq R$.