Fachbereich Mathematik Dr. Thomas Keilen

Commutative Algebra

Due date: Monday, 29/11/2004, 14h00

Only exercises 9, 10 and 11f. should be handed in.

Exercise 9: Let R be a ring, $\mathcal{M} = \{I \leq R \mid I \text{ consists of zero-divisors}\}$. Show:

- a. If $P \in \mathcal{M}$ is maximal w. r. t. inclusion, then P is prime.
- b. If $I \in \mathcal{M}$, then there is a $P \in \mathcal{M}$ maximal such that $I \subset P$.
- c. The set of zero-divisors in R is a union of prime ideals.

Exercise 10: Let R be an integral domain and $r \in R$.

- a. If r is irreducible in R, then r is irreducible in R[x].
- b. If r is prime in R, then r is prime in R[x].

Exercise 11: Let R be a ring and X = Spec(R) endowed with the Zariski topology from Exercise 8. For $f \in R$ we define $X_f := X \setminus V(f) = \{P \in \text{Spec}(R) \mid f \notin P\}$.

a. $\{X_f \mid f \in R\}$ is a basis of the topology,

i. e. if $U \subset X$ is open, then there are $f_{\lambda} \in R$, $\lambda \in \Lambda$, such that $U = \bigcup_{\lambda \in \Lambda} X_{f_{\lambda}}$.

- b. If $f, g \in R$, then $X_f \cap X_g = X_{f \cdot g}$.
- c. $X_f = \emptyset$ if and only if f is nilpotent.
- d. $X_f = X$ if and only if f is a unit.
- e. $X_f = X_g$ if and only if $\sqrt{\langle f \rangle} = \sqrt{\langle g \rangle}$.
- f. X_f is quasi-compact, i. e. if $X_f = \bigcup_{\lambda \in \Lambda} U_\lambda$ with $U_\lambda \subset X$ open, then there are $\lambda_1, \ldots, \lambda_n \in \Lambda$ such that $X_f = \bigcup_{i=1}^n U_{\lambda_i}$.

Hint for part f.: Reduce to the case that $U_{\lambda} = X_{f_{\lambda}}$ and note that any linear combination of the f_{λ} only involves finitely many of them.

Exercise 12: Let $\phi \in \text{Hom}(R, S)$ be a ring homomorphism, X = Spec(R) and Y = Spec(Y), both endowed with the Zariski topology.

- a. If $Q \in \text{Spec}(S)$, then $Q^c = \phi^{-1}(Q) \in \text{Spec}(R)$. In particular, $\phi^* : Y \to X : Q \mapsto Q^c$ is defined.
- b. If $I \trianglelefteq R$, then $(\varphi^*)^{-1}(V(I)) = V(I^e)$. In particular, φ^* is continuous.
- c. If $f \in R$, then $(\phi^*)^{-1}(X_f) = Y_{\phi(f)}$.
- d. If $J \leq S$, then $\overline{\phi^*(V(J))} = V(J^c)$.
- e. If φ is surjective, then φ^* is a homeomorphism onto its image $\text{Im}(\varphi^*) = V(\text{ker}(\varphi))$.
- f. $Im(\phi^*)$ is dense in X if and only if $ker(\phi) \subseteq \mathcal{N}(R)$. In particular, if ϕ is injective, then $Im(\phi^*)$ is dense in X.