Fachbereich Mathematik

Dr. Thomas Keilen

Commutative Algebra

Due date: Monday, 13/12/2004, 14h00

Exercise 13: Show that the following statements are equivalent:

- a. R is a PID.
- b. R is a UFD and for $a, b \in R$ with $1 \in gcd(a, b)$ we have $1 \in \langle a, b \rangle$.

Hint, if R satisfies b. and $I \leq R$ consider a maximal element $\langle a \rangle$ in the set $\mathcal{M} = \{\langle a \rangle \mid a \in I\}$ and show $I = \langle a \rangle$. Why does this maximal element exist?

Exercise 14: Let $R = \mathbb{R}[[x]]$ be the ring of formal power series over the real numbers and $M = R^3$. Consider the R-linear map $\varphi : M \to M : \mathfrak{m} \mapsto A \cdot \mathfrak{m}$ where

$$A = \begin{pmatrix} 1 + x^4 - x^7 + 3x^{100} & \cos(x) & 2 - \exp(x) \\ \sin(x) & \sum_{i=0}^{\infty} (-x)^i & \exp(\sin(x)) \\ x^4 - 5x^8 & \sum_{i=0}^{\infty} (5x + x^2)^i & 0 \end{pmatrix} \in Mat(3 \times 3, R).$$

Is φ an isomorphism?

Exercise 15: Let R be a ring, M a finitely generated R-module and $\varphi \in \text{Hom}_{R}(M, \mathbb{R}^{n})$ surjective. Show that $\text{ker}(\varphi)$ is finitely generated as an R-module.

Hint, note that the short exact sequence $0\to \text{ker}(\phi)\to M\to R^n\to 0$ is split exact.