Commutative Algebra

Due date: Monday, 13/12/2004, 14h00

Exercise 13: Show that the following statements are equivalent:
a. R is a PID.
b. R is a UFD and for $a, b \in R$ with $1 \in \operatorname{gcd}(a, b)$ we have $1 \in\langle a, b\rangle$.

Hint, if R satisfies b. and $I \unlhd R$ consider a maximal element $\langle a\rangle$ in the set $\mathcal{M}=\{\langle a\rangle \mid a \in I\}$ and show $I=\langle a\rangle$. Why does this maximal element exist?

Exercise 14: Let $R=\mathbb{R}[[x]]$ be the ring of formal power series over the real numbers and $M=R^{3}$. Consider the R-linear map $\varphi: M \rightarrow M: m \mapsto A \cdot m$ where

$$
A=\left(\begin{array}{ccc}
1+x^{4}-x^{7}+3 x^{100} & \cos (x) & 2-\exp (x) \\
\sin (x) & \sum_{i=0}^{\infty}(-x)^{i} & \exp (\sin (x)) \\
x^{4}-5 x^{8} & \sum_{i=0}^{\infty}\left(5 x+x^{2}\right)^{i} & 0
\end{array}\right) \in \operatorname{Mat}(3 \times 3, R)
$$

Is φ an isomorphism?
Exercise 15: Let R be a ring, M a finitely generated R-module and $\varphi \in \operatorname{Hom}_{R}\left(M, R^{n}\right)$ surjective. Show that $\operatorname{ker}(\varphi)$ is finitely generated as an R-module.

Hint, note that the short exact sequence $0 \rightarrow \operatorname{ker}(\varphi) \rightarrow M \rightarrow R^{n} \rightarrow 0$ is split exact.

