5.26 Corollary

Let R be a Noetherian ring, $P \in \operatorname{Spec}(R)$ minimal over $a_{1}, \ldots, a_{r} \in$ $R \backslash R^{*}$, then $\operatorname{height}(P) \leq r$.

Proof: We do the proof by induction on r where the case $r=1$ follows from Krull's Principle Ideal Theorem 5.25.
Suppose therefore that there exists a chain of prime ideals

$$
P_{0} \varsubsetneqq P_{1} \varsubsetneqq \ldots \varsubsetneqq P_{r+1}=P .
$$

Let's consider first the case that $a_{r} \in P_{1}$. Then $P /\left\langle a_{r}\right\rangle$ is minimal over $\overline{a_{1}}, \ldots, \overline{a_{r-1}} \in R /\left\langle a_{r}\right\rangle$, and by induction hypothesis we have height $\left(P /\left\langle a_{r}\right\rangle \leq r-1\right.$. This, however, is in contradiction to the existence of the chain of prime ideals

$$
P_{1}\left\langle a_{r}\right\rangle \varsubsetneqq \ldots \varsubsetneqq P_{r+1}\left\langle a_{r}\right\rangle=P\left\langle a_{r}\right\rangle .
$$

Let us now suppose the $a_{r} \notin P_{1}$. Choose $k \geq 2$ minimal such that $a_{r} \in P_{k} \backslash P_{k-1}$. Then

$$
0=P_{k-2} / P_{k-2} \varsubsetneqq P_{k-2}+\left\langle a_{r}\right\rangle / P_{k-2} \subseteq P_{k} / P_{k-2}
$$

Hence, $\operatorname{height}\left(P_{k} / P_{k-2}\right) \geq 2$, and by Krull's Principle Ideal Theorem $5.25 P_{k} / P_{k-2}$ is not minimal over $\overline{a_{r}} \in R / P_{k-2}$. That is, there exists a $P_{k-1}^{\prime} \in \operatorname{Spec}(R)$ such that $P_{k-2} \varsubsetneqq P_{k-1}^{\prime} \varsubsetneqq P_{k}$ and $a_{r} \in P_{k-1}^{\prime}$. This gives a chain of prime ideals

$$
P_{0} \varsubsetneqq P_{1} \varsubsetneqq \cdots \varsubsetneqq P_{k-2} \varsubsetneqq P_{k-1}^{\prime} \varsubsetneqq P_{k} \varsubsetneqq \ldots \varsubsetneqq P_{r+1}=P,
$$

and $a_{r} \in P_{k-1}^{\prime}$. We can of course repeat this process as long as $k-1>1$. Thus we end up with a chain of prime ideals

$$
P_{0} \varsubsetneqq P_{1}^{\prime} \varsubsetneqq \ldots \varsubsetneqq P_{k-1}^{\prime} \varsubsetneqq \ldots \varsubsetneqq P_{r+1}=P
$$

and $a_{r} \in P_{1}^{\prime}$. Returning to the first case considered above this leads to a contradiction.

