Fachbereich Mathematik
Dr. Thomas Markwig

Commutative Algebra

Due date: Tuesday, 08/11/05, 10h00

Exercise -1: Let $0 \neq f = \sum_{|\alpha|=0}^m \alpha_{\alpha} \underline{x}^{\alpha} \in R[x_1, \dots, x_n]$ be a polynomial over the ring R. Recall:

$$deg(f) := max\{|\alpha| \mid \alpha_{\alpha} \neq 0\}$$

is the *degree* of f, and we set $deg(0) = -\infty$. Show for f, $g \in R[x_1, ..., x_n]$:

- a. $deg(f + g) \le max\{deg(f), deg(g)\},\$
- b. $deg(f \cdot g) \le deg(f) + deg(g)$,
- c. $deg(f \cdot g) = deg(f) + deg(g)$, if R is an integral domain.

Note, R is an integral domain if $r \cdot r' = 0$ for $r, r' \in R$ implies that r = 0 or r' = 0.

Exercise 0: Let K be a ring, $d \in \mathbb{N}$, and

$$K[x_1,\ldots,x_n]_d = \left\{ \sum_{|\alpha| = \alpha_1 + \ldots + \alpha_n = d} \alpha_\alpha \cdot x_1^{\alpha_1} \cdots x_n^{\alpha_n} \;\middle|\; \alpha_\alpha \in K \right\}.$$

We call the elements of $K[x_1, ..., x_n]_d$ homogeneous of degree d.

- a. Show that every polynomial $0 \neq f \in K[x_1, ..., x_n]$ of degree d admits a unique decomposition $f = f_0 + ... + f_d$ with $f_i \in K[x_1, ..., x_n]_i$. We call the f_i the homogeneous summands of f.
- b. An ideal $I \subseteq K[x_1, \dots, x_n]$ is called *homogeneous*, if $f \in I$ implies that the homogeneous summands of f belong to I.

Show that I is homogeneous if and only if I is generated by homogeneous elements.

Exercise 1: [The field $K\{\{t\}\}\}$]

a. We call $A \subset \mathbb{R}$ *suitable* if A is infinite countable, bounded from below, and has no limit point, and we then set $\mathcal{A} := \{A \subset \mathbb{R} \mid A \text{ is suitable}\}$. Show that for $A, B \in \mathcal{A}$

$$A+B:=A\cup B\in \mathcal{A}\quad \text{ and }\quad A*B:=\{\alpha+b\mid \alpha\in A, b\in B\}\in \mathcal{A}.$$

b. Let K be any field and consider the set

$$K\{\!\{t\}\!\} := \{f: \mathbb{R} \to \mathbb{R} \mid \exists \; A \in \mathcal{A} \; : \; f(\alpha) = 0 \; \forall \; \alpha \not \in A\}.$$

We define two binary operations on $K\{\{t\}\}$:

$$f + g : \mathbb{R} \to \mathbb{R} : \alpha \mapsto f(\alpha) + g(\alpha)$$

and

$$f * g : \mathbb{R} \to \mathbb{R} : \alpha \mapsto \sum_{\gamma \in \mathbb{R}} f(\alpha - \gamma) \cdot g(\gamma),$$

note for the latter that for a fixed α only finitely many summands are non-zero! Show that $(K\{\{t\}\}, +, *)$ is a field.

Hint for part b., show first that $(K\{\{t\}\},+)$ is a subgroup of $(\mathbb{R}^\mathbb{R},+)$. The hard part is to show that every non-zero element of $K\{\{t\}\}$ has an inverse. For this consider first the case that $f(\alpha)=0$ for $\alpha<0$ and f(0)=1, and use the geometric series.

Remark 1

Let $(\alpha_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ be a sequence of real numbers. We define

 $\alpha_n \nearrow \infty \ :\Longleftrightarrow \ (\alpha_n)_{n \in \mathbb{N}} \text{ is strictly monotonously increasing and unbounded,}$

and we set $\mathbb{A} := \{(\alpha_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \alpha_n \nearrow \infty\}$. Obviously,

$$\Phi: \mathbb{A} \longrightarrow \mathcal{A}: (\alpha_n)_{n \in \mathbb{N}} \mapsto \{\alpha_n \mid n \in \mathbb{N}\}$$

is bijective.

For $(\alpha_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ and $(\alpha_n)_{n\in\mathbb{N}}\in K^\mathbb{N}$ we define

$$\sum_{n=0}^{\infty} \alpha_n \cdot t^{\alpha_n} : \mathbb{R} \longrightarrow \mathsf{K} : \alpha \mapsto \left\{ \begin{array}{ll} \alpha_n, & \text{if } \alpha = \alpha_n, \\ \mathfrak{0}, & \text{else}. \end{array} \right.$$

That is, we use the "sequence" in order to store the values of a function in such a way, that the value at α_n is just the coefficient at t^{α_n} . Thus

$$\begin{split} K\{\!\{t\}\!\} = & \Big\{ f: \mathbb{R} \to \mathbb{R} \ \Big| \ \exists \ \alpha_n \nearrow \infty \ : \ f(\alpha) = 0 \ \forall \ \alpha \not\in \{\alpha_n \mid n \in \mathbb{N}\} \Big\} \\ = & \left\{ \sum_{n=0}^{\infty} \alpha_n \cdot t^{\alpha_n} \ \bigg| \ \alpha_n \nearrow \infty, \alpha_n \in K \right\}. \end{split}$$

Given $f = \sum_{n=0}^{\infty} a_n \cdot t^{\alpha_n}, g = \sum_{n=0}^{\infty} b_n \cdot t^{\beta_n} \in K\{\{t\}\}.$

a. f=g if and only if $a_n=b_m$ whenever $\alpha_n=\beta_m$ and if $a_i=b_j=0$ if there is no matching.

b.
$$f*g = \textstyle\sum_{n=0}^{\infty} \big(\sum_{\alpha_i + \beta_j = \gamma_n} \alpha_i \cdot b_j \big) \cdot t^{\gamma_n} \text{, where } (\gamma_n)_{n \in \mathbb{N}} = \Phi^{-1} \big(\Phi((\alpha_n)_{n \in \mathbb{N}}) * \Phi((\beta_n)_{n \in \mathbb{N}}) \big).$$

c.
$$f+g=\textstyle\sum_{n=0}^{\infty}\left(f(\gamma_n)+g(\gamma_n)\right)\cdot t^{\gamma_n}\text{, where }(\gamma_n)_{n\in\mathbb{N}}=\Phi^{-1}\big(\Phi((\alpha_n)_{n\in\mathbb{N}})+\Phi((\beta_n)_{n\in\mathbb{N}})\big).$$

d. If
$$\alpha_0=0$$
 and $\alpha_0=1$, then $f^{-1}=\sum_{n=0}^{\infty} \left(-\sum_{k=1}^{\infty} \alpha_k \cdot t^k\right)^n$.