Fachbereich Mathematik Dr. Thomas Markwig

Commutative Algebra

Due date: Tuesday, 29/11/2005, 10h00

Exercise 9: Let M be an R-module.

a. Prove that $\mu: M \to Hom_R(R, M)$ with $\mu(\mathfrak{m}): R \to M: r \mapsto r \cdot \mathfrak{m}$ is an isomorphism.

b. Give an example where $M \ncong Hom_R(M, R)$.

Exercise 10: Let R be an integral domain and $0 \neq I \leq R$. Show that I as R-module is free if and only if I is principal.

Exercise 11: Let $R = \mathbb{R}[[x]]$ be the ring of formal power series over the real numbers. Consider the R-linear map $\varphi : R^3 \to R^2 : \mathfrak{m} \mapsto A \cdot \mathfrak{m}$ where

$$A = \begin{pmatrix} 1 + x^4 - x^7 + 3x^{100} & \cos(x) & 2 - \exp(x) \\ x^4 - 5x^8 & \sum_{i=0}^{\infty} (5x + x^2)^i & 0 \end{pmatrix} \in Mat(2 \times 3, R).$$

Is φ an epimorphism?

Exercise 12: Let $p \in \mathbb{Z}$ be a prime number. Consider the subring $R = \left\{\frac{a}{b} \mid a, b \in \mathbb{Z}, p \mid b\right\} \leq \mathbb{Q}$ of the rational numbers, and consider $M = \mathbb{Q}$ as an R-module.

a. Show that R is local with maximal ideal $\mathfrak{m}=\left\{\frac{\mathfrak{a}}{\mathfrak{b}}\;\middle|\; \mathfrak{a},\mathfrak{b}\in\mathbb{Z},\mathfrak{p}\;\;\middle/\!\!/\mathfrak{b},\mathfrak{p}\;\middle|\; \mathfrak{a}\right\}$.

b. $\mathfrak{m} \cdot M = M$, but $M \neq 0$.

c. Find a set of generators for M.