Fachbereich Mathematik
Winter Semester 2005/06, Set 6
Dr. Thomas Markwig

Commutative Algebra

Due date: Tuesday, 20/12/2005, 10h00
Exercise 21: Let $S \subseteq R$ be a multiplicatively closed subset, and consider the ring extension $i: R \rightarrow S^{-1} R: r \mapsto \frac{r}{1}$. Show that

$$
\{P \in \operatorname{Spec}(R) \mid S \cap P=\emptyset\} \longrightarrow \operatorname{Spec}\left(S^{-1} R\right): P \mapsto P^{e}=S^{-1} P
$$

is bijective with inverse

$$
\operatorname{Spec}\left(S^{-1} R\right) \longrightarrow\{P \in \operatorname{Spec}(R) \mid S \cap P=\emptyset\}: Q \mapsto Q^{c}=i^{-1}(Q)
$$

In particular, for prime ideals $P \in \operatorname{Spec}(R)$ we have $\left(P^{e}\right)^{c}=P$.

Exercise 22:

a. Let K be a field, $R=K[x, y, z] /\langle x z, y z\rangle$ and $P=\langle x, y, z-1\rangle \unlhd R$. Show $R_{P} \cong K[z]_{\langle z-1\rangle}$.
b. Let R be a ring, $f \in R$ a non-zero-divisor. Show $R_{f} \cong R[x] /\langle f x-1\rangle$.

Exercise 23: Let R be a ring and $\mathcal{N}(R)$ its nilradical. Show:
a. If $S \subseteq R$ multiplicatively closed, then $\mathcal{N}\left(S^{-1} R\right)=S^{-1} \mathcal{N}(R)$.
b. A ring is called reduced if it has no nilpotent elements except 0 . Show that "being reduced" is a local property.

Exercise 24: Let $I:=\langle 2,1+\sqrt{-5}\rangle \triangleleft \mathbb{Z}[\sqrt{-5}]$. Show that I as an R-module is projective, but not free.

Hint, note that $2 \in I \cdot I$. Use this to show that $I \neq\langle x\rangle$ for any x, while for any prime P containing I we have I_{P} is generated by $1+\sqrt{-5}$. For the last statement use Nakayama's Lemma in a sensible way!

Exercise 25: [Being flat is a local property.]

Let R be a ring and M an R-module. Then the following are equivalent:
a. M is a flat R-module.
b. M_{P} is a flat R_{P} module for each $P \in \operatorname{Spec}(R)$.
c. $M_{\mathfrak{m}}$ is a flat $R_{\mathfrak{m}}$ module for each $\mathfrak{m} \triangleleft \cdot R$.

Beweis: $c . \Longrightarrow$ a.: Let $N^{\prime} \hookrightarrow N$ be R-linear and injective, then $N_{\mathfrak{m}}^{\prime} \hookrightarrow N_{\mathfrak{m}}$ is $R_{\mathfrak{m}}$-linear and injective, since localisation is exact.. Then by Exercise 18,

where the last row is injective by assumption, and thus so is the first row. Injectivity being a local property this implies that $N^{\prime} \otimes_{R} M \hookrightarrow N \otimes_{R} M$ is injective.
a. \Longrightarrow b.: Let $N^{\prime} \hookrightarrow N$ be R_{P}-linear and injective, then $N^{\prime} \hookrightarrow N$ is R-linear and injective. Note that if we consider N respectively N^{\prime} as R-modules and localise w.r.t. P we get $\mathrm{N}=\mathrm{N}_{\mathrm{p}}$ and $\mathrm{N}^{\prime}=\mathrm{N}_{\mathrm{p}}^{\prime}$. Then by Exercise 18,

where the first row is injective by assumption and since localisation is exact, and thus so is the last row.
$\mathrm{b} . \Longrightarrow \mathrm{c}$.: Clear.

