Fachbereich Mathematik Dr. Thomas Markwig

Commutative Algebra

Due date: Tuesday, 17/01/2005, 10h00

Exercise 29: Let R be a ring, $P \in Spec(R)$, and $n \ge 1$. Show that the *symbolic power* $P^{(n)} := \{ a \in R \mid \exists \ s \in R \setminus P : \ s \cdot a \in P^n \}$ is a P-primary ideal.

Note, if
$$\iota: R \to R_P: a \mapsto \frac{\alpha}{L}$$
, then $P^{(n)} = \left((P^n)^e \right)^c = \iota^{-1} \left(\langle P^n \rangle_{R_P} \right)$.

Exercise 30: Let R be a noetherian integral domain of dimension dim(R) = 1, and let $0 \neq I \leq R$.

Show if $I=Q_1\cap\ldots\cap Q_n$ is a minimal primary decomposition, then $I=Q_1\cdots Q_n$. In particular, every non-zero ideal I is a finite product of primary ideals Q_i with $\sqrt{Q_i}\neq\sqrt{Q_j}$ for $i\neq j$, and the factors are unique up to ordering.

Hint, Chinese Remainder Theorem.

Exercise 31: Find a minimal primary decomposition of $I = \langle 6 \rangle \triangleleft \mathbb{Z}[\sqrt{-5}]$.

Hint, consider the ideals $P = \langle 2, 1 + \sqrt{-5} \rangle$, $Q = \langle 3, 1 + \sqrt{-5} \rangle$, and $Q' = \langle 3, 1 - \sqrt{-5} \rangle$.

Exercise 32: Let R = K[x, y, z] for some field K.

- a. Let $P = \langle x, y \rangle$ and $Q = \langle y, z \rangle$. Calculate a minimal primary decomposition of $I = P \cdot Q$. Which of the components are isolated, which are embedded?
- b. Calculate a primary decomposition of $J = \langle xz y^2, y x^2 \rangle$.

Hint, in part b. consider $\varphi: R \to K[x]$ with $x \mapsto x, y \mapsto x^2, z \mapsto x^3$, $P = \ker(\varphi)$, and $Q = \langle x, y \rangle$. Show that $\ker(\varphi) = \langle y - x^2, z - x^3 \rangle$ using division with remainder.