Fachbereich Mathematik
Winter Semester 2005/06, Set 12
Dr. Thomas Markwig

Commutative Algebra

Due date: Tuesday, 14/02/2006, 10h00
Exercise 44: Prove the Algebraic HNS (Theorem 7.1) using Noether-Normalisation.
Exercise 45: Let R be a ring. Show that $\operatorname{dim}(R[x]) \geq \operatorname{dim}(R)+1$.
Hint, consider ideals of the form $I[x]=\left\{\sum_{i=0}^{n} a_{i} x^{i} \mid n \geq 0, a_{i} \in I\right\}$ for some ideal $I \unlhd R$. - Note, if R is noetherian one can actually show equality, but that is much harder.

Exercise 46: Let R be an integral domain. Show:
a. R is a valuation ring if and only if for two ideals $\mathrm{I}, \mathrm{J} \unlhd \mathrm{R}$ we have $\mathrm{I} \subseteq \mathrm{J}$ or $\mathrm{J} \subseteq \mathrm{I}$.
b. If R is a valuation ring and $P \in \operatorname{Spec}(R)$, then R_{P} and R / P are valuation rings.

Exercise 47: [The field $K\{\{\mathrm{t}\}\}$]

a. We call $A \subset \mathbb{R}$ suitable if A is infinite countable, bounded from below, and has no limit point, and we then set $\mathcal{A}:=\{A \subset \mathbb{R} \mid \mathrm{A}$ is suitable $\}$. Show that for $\mathrm{A}, \mathrm{B} \in \mathcal{A}$

$$
A+B:=A \cup B \in \mathcal{A} \quad \text { and } \quad A * B:=\{a+b \mid a \in A, b \in B\} \in \mathcal{A}
$$

b. Let K be any field and consider the set

$$
\mathrm{K}\{\{\mathrm{t}\}\}:=\{\mathrm{f}: \mathbb{R} \rightarrow \mathrm{K} \mid \exists A \in \mathcal{A}: \mathrm{f}(\alpha)=0 \forall \alpha \notin \mathrm{~A}\} .
$$

We define two binary operations on $K\{\{t\}\}$:

$$
f+g: \mathbb{R} \rightarrow K: \alpha \mapsto f(\alpha)+g(\alpha)
$$

and

$$
f * g: \mathbb{R} \rightarrow K: \alpha \mapsto \sum_{\gamma \in \mathbb{R}} f(\alpha-\gamma) \cdot g(\gamma)
$$

note for the latter that for a fixed α only finitely many summands are non-zero! Show that $(\mathrm{K}\{\{\mathrm{t}\}\},+, *)$ is a field.
c. Show that ord : $\left(\mathrm{K}\{\{\mathrm{t}\}\}^{*}, *\right) \rightarrow(\mathbb{R},+): f \mapsto \min \{\alpha \in \mathbb{R} \mid f(\alpha) \neq 0\}$ is a valuation.
d. $R_{\text {ord }}$ is not noetherian, hence ord is not discrete, but $\operatorname{dim}\left(R_{\text {ord }}\right)=1$.

Hint for part b., show first that $(\mathrm{K}\{\{\mathrm{t}\}\},+)$ is a subgroup of $\left(\mathrm{K}^{\mathbb{R}},+\right)$; the hard part is to show that every non-zero element of $K\{\{t\}\}$ has an inverse. For this consider first the case that $f(\alpha)=0$ for $\alpha<0$ and $f(0)=1$, and use the geometric series. For part d., note that $\mathfrak{m}_{R_{\text {ord }}}=\left\langle t^{\alpha} \mid \alpha>0\right\rangle$, where $t^{\alpha}: \mathbb{R} \rightarrow K$ satisfies $t^{\alpha}(\alpha)=1$ and $t^{\alpha}(\beta)=0$ for $\beta \neq \alpha$.

Remark 1

Let $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ be a sequence of real numbers. We define
$\alpha_{n} \nearrow \infty \quad: \Longleftrightarrow\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ is strictly monotonously increasing and unbounded, and we set $\mathbb{A}:=\left\{\left(\alpha_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \alpha_{n} \nearrow \infty\right\}$. Obviously,

$$
\Phi: \mathbb{A} \longrightarrow \mathcal{A}:\left(\alpha_{n}\right)_{n \in \mathbb{N}} \mapsto\left\{\alpha_{n} \mid n \in \mathbb{N}\right\}
$$

is bijective.
For $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ and $\left(a_{n}\right)_{n \in \mathbb{N}} \in K^{\mathbb{N}}$ we define

$$
\sum_{n=0}^{\infty} a_{n} \cdot t^{\alpha_{n}}: \mathbb{R} \longrightarrow K: \alpha \mapsto \begin{cases}a_{n}, & \text { if } \alpha=\alpha_{n} \\ 0, & \text { else }\end{cases}
$$

That is, we use the "sequence" in order to store the values of a funciton in such a way, that the value at α_{n} is just the coefficient at $t^{\alpha_{n}}$. Thus

$$
\begin{aligned}
K\{\{t\}\} & =\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid \exists \alpha_{n} \nearrow \infty: f(\alpha)=0 \forall \alpha \notin\left\{\alpha_{n} \mid n \in \mathbb{N}\right\}\right\} \\
& =\left\{\sum_{n=0}^{\infty} a_{n} \cdot t^{\alpha_{n}} \mid \alpha_{n} \nearrow \infty, a_{n} \in K\right\} .
\end{aligned}
$$

Given $f=\sum_{n=0}^{\infty} a_{n} \cdot t^{\alpha_{n}}, g=\sum_{n=0}^{\infty} b_{n} \cdot t^{\beta_{n}} \in K\{\{t\}\}$.
a. $f=g$ if and only if $a_{n}=b_{m}$ whenever $\alpha_{n}=\beta_{m}$ and if $a_{i}=b_{j}=0$ if there is no matching.
b. $f * g=\sum_{n=0}^{\infty}\left(\sum_{\alpha_{i}+\beta_{j}=\gamma_{n}} a_{i} \cdot b_{j}\right) \cdot t^{\gamma_{n}}$, where $\left(\gamma_{n}\right)_{n \in \mathbb{N}}=\Phi^{-1}\left(\Phi\left(\left(\alpha_{n}\right)_{n \in \mathbb{N}}\right) * \Phi\left(\left(\beta_{n}\right)_{n \in \mathbb{N}}\right)\right)$.
c. $f+g=\sum_{n=0}^{\infty}\left(f\left(\gamma_{n}\right)+g\left(\gamma_{n}\right)\right) \cdot t^{\gamma_{n}}$, where $\left(\gamma_{n}\right)_{n \in \mathbb{N}}=\Phi^{-1}\left(\Phi\left(\left(\alpha_{n}\right)_{n \in \mathbb{N}}\right)+\Phi\left(\left(\beta_{n}\right)_{n \in \mathbb{N}}\right)\right)$.
d. If $\alpha_{0}=0$ and $a_{0}=1$, then $f^{-1}=\sum_{n=0}^{\infty}\left(-\sum_{k=1}^{\infty} a_{k} \cdot t^{k}\right)^{n}$.

