LECTURE NOTES IN COMMUTATIVE ALGEBRA

THOMAS MARKWIG

1 Rings and Modules

C) Euclidean Rings, PID's and UFD's

1.23 Definition

Let R be an integral domain, $r, r^{\prime} \in R$.
a. r divides r^{\prime} if and only if

$$
\exists t \in R: r^{\prime}=t \cdot r
$$

if and only if

$$
\left\langle r^{\prime}\right\rangle \subseteq\langle r\rangle .
$$

We denote this by $r \mid r^{\prime}$.
b. r is irreducible if and only if

$$
0 \neq r \notin R^{*} \quad \text { and } \quad\left(r=s \cdot t \Rightarrow s \in R^{*} \quad \text { or } t \in R^{*}\right) .
$$

c. r is prime if and only if

$$
0 \neq r \notin R^{*} \quad \text { and } \quad(r|s \cdot t \Rightarrow r| s \text { or } r \mid t)
$$

if and only if

$$
\langle 0\rangle \neq\langle r\rangle \text { is a prime ideal. }
$$

d. r and r^{\prime} are associated if and only if

$$
\exists u \in R^{*}: r=r^{\prime} \cdot u
$$

if and only if

$$
\langle r\rangle=\left\langle r^{\prime}\right\rangle .
$$

1.24 Example a. If r is prime, then r is irreducible.

Proof: If $r=s \cdot t$, then $r \mid s \cdot t$, and since r is prime we thus may assume $r \mid s$. Hence there is a $u \in R$ such that $s=u \cdot r$, and therefore $r=r \cdot u \cdot t$. Cancelling out the non-zerodivisor r we get $1=u \cdot t$, that is, $t \in R^{*}$.
b. If r and s are irreducible and $r \mid s$, then r and s are associated.

Proof: If $r \mid s$, then $s=r \cdot t$ for some $t \in R$. But since s is irreducible, t or r must be a unit. Since r is irreducible, it is not a unit. Thus t is a unit, and r and s are associated.
c. If $R=\mathbb{Z}$ is the ring of integers, then:
p is irreducible $\Longleftrightarrow p$ is prime $\Longleftrightarrow p$ is a prime number.
d. If $R=K[x]$, where K is a field, then by Proposition 1.30:

$$
p \text { is prime } \Longleftrightarrow p \text { is an irreducible polynomial. }
$$

e. If $R=K[[x]]$, where K is a field, then by Proposition 1.30: p is prime $\Leftrightarrow p$ is irreducible $\Leftrightarrow p=u \cdot x$ for some unit $u \Leftrightarrow \operatorname{ord}(p)=1$.

1.25 Definition

Let R be an integral domain.
a. R is a Euclidean ring if and only if there is a function $\nu: R \backslash\{0\} \rightarrow \mathbb{N}$ such that

$$
\forall a, b \in R \backslash\{0\} \exists q, r \in R: a=q \cdot b+r \text { with } r=0 \text { or } 0 \leq \nu(r)<\nu(b) .
$$

We call this decomposition of a a division with remainder (short: DwR) of a with respect to b.
b. R is a principle ideal domain (short: PID) if and only if every ideal in R is principle.
c. R is a unique factorisation domain (short: UFD) or factorial if and only if every $0 \neq r \in R \backslash R^{*}$ is a product of finitely many prime elements.
1.26 Example a. $R=\mathbb{Z}$ is a Euclidean ring with $\nu(z)=|z|$ due to the usual DwR in \mathbb{Z}.
b. $R=K[x]$, where K is a field, is a Euclidean ring with $\nu(f)=\operatorname{deg}(f)$ by Proposition 1.27.
c. $R \in\{K[[x]], \mathbb{R}\{x\}, \mathbb{C}\{x\} \mid K$ is a field $\}$, is a Euclidean ring with $\nu(f)=\operatorname{ord}(f)$.

Proof: Given $a, b \in R$ we can write them uniquely as $a=u \cdot x^{n}$ respectively $b=v \cdot x^{m}$ for some units $u, v \in K[[x]]^{*}$ and where $n=\operatorname{ord}(a)$ and $m=\operatorname{ord}(b)$. If $n<m$, then $a=0 \cdot b+a$ is the desired decomposition, while if $n \geq m$, then $a=\left(u \cdot x^{n-m} \cdot v^{-1}\right) \cdot b+0$ is.
d. $R=\mathbb{Z}[i]=\{x+i \cdot y \mid x, y \in \mathbb{Z}\} \leq \mathbb{C}$ is a Euclidean ring with $\nu(x+i \cdot y)=$ $|x+i y|^{2}=x^{2}+y^{2}$.

Proof: Let $a, b \in \mathbb{Z}[i], b \neq 0$, be given. Then the complex number $\frac{a}{b}=u+i \cdot v$ for some real numbers $u, v \in \mathbb{R}$. Approximating u and v by integers we find $m, n \in \mathbb{Z}$ such that $|u-m| \leq \frac{1}{2}$ and $|v-n| \leq \frac{1}{2}$. Setting $q:=m+i \cdot n \in \mathbb{Z}[i]$ and $r:=a-q \cdot b \in \mathbb{Z}[i]$ we have

$$
\nu(r)=|a-q b|^{2}=|b|^{2} \cdot\left((u-m)^{2}+(v-n)^{2}\right) \leq \frac{1}{2} \cdot|b|^{2}<\nu(b)
$$

and $a=q \cdot b+r$.
1.27 Proposition (Division with Remainder)

Let R be a ring, $f=\sum_{i=0}^{n} f_{i} x^{i}, g=\sum_{i=0}^{m} g_{i} x^{i} \in R[x]$ such that $f_{n} \neq 0 \neq g_{m}$.
a. Then $\exists k \geq 0, q, r \in R[x]$ such that $f_{n}^{k} \cdot g=q \cdot f+r$ and $\operatorname{deg}(r)<\operatorname{deg}(f)$.
b. If R is an ID and $f_{n} \in R^{*}$, then there are unique $q, r \in R[x]$ such that $g=q \cdot f+r$ and $\operatorname{deg}(r)<\operatorname{deg}(f)$.

Proof: a. We do the proof by induction on $m=\operatorname{deg}(g)$.
Note, if $m=n=0$, then we are done with $k=1, q=g$ and $r=0$, and if $0 \leq m<n$, we may set $k=0, q=0$ and $r=g$.
We thus may assume that $m>0$ and $n \leq m$. Set

$$
g^{\prime}:=f_{n} \cdot g-g_{m} \cdot x^{m-n} \cdot f .
$$

Then $\operatorname{deg}\left(g^{\prime}\right)<\operatorname{deg}(g)=m$ and by induction there are $q^{\prime}, r^{\prime} \in R[x]$ and $k^{\prime} \geq 0$ such that

$$
q^{\prime} \cdot f+r^{\prime}=f_{n}^{k^{\prime}} \cdot g^{\prime}=f_{n}^{k^{\prime}+1} \cdot g-f_{n}^{k^{\prime}} \cdot g_{m} \cdot x^{m-n} \cdot f
$$

and $\operatorname{deg}\left(r^{\prime}\right)<\operatorname{deg}(f)$. This implies

$$
f_{n}^{k^{\prime}+1} \cdot g=\left(q^{\prime}+f_{n}^{k^{\prime}} \cdot g_{m} \cdot x^{m-n}\right) \cdot f+r^{\prime},
$$

and we are done setting $k=k^{\prime}+1, q=q^{\prime}+f_{n}^{k^{\prime}} \cdot g_{m} \cdot x^{m-n}$, and $r=r^{\prime}$.
b. The existence of the decomposition follows from a., since f_{n} is invertible. As for the uniqueness suppose that

$$
g=q \cdot f+r=q^{\prime} \cdot f+r^{\prime}
$$

with $q, q^{\prime}, r, r^{\prime} \in R[x]$ and $\operatorname{deg}(r), \operatorname{deg}\left(r^{\prime}\right)<\operatorname{deg}(f)$. Then

$$
\operatorname{deg}\left(q-q^{\prime}\right) \cdot \operatorname{deg}(f)=\operatorname{deg}\left(r^{\prime}-r\right) \leq \max \left\{\operatorname{deg}(r), \operatorname{deg}\left(r^{\prime}\right)\right\}<\operatorname{deg}(f)
$$

which implies that $q-q^{\prime}=0$. But then $q=q^{\prime}$ and hence $r=r^{\prime}$.

1.28 Theorem

If R is a Euclidean ring, then R is a PID.

Proof: Let $0 \neq I \unlhd R$ be an ideal. Then there is a $0 \neq a \in I$ such that $\nu(a)$ is minimal. We claim that $I=\langle a\rangle$, where " \supseteq " is clear.
Let $b \in I$, then there are $q, r \in R$ such that $b=q \cdot a+r$ and $r=0$ or $\nu(r)<\nu(a)$. Since $r=b-q \cdot a \in I$ and $\nu(a)$ was minimal, we conclude that $r=0$. Thus $b=q \cdot a \in\langle a\rangle$.

1.29 Corollary

$\mathbb{Z}, \mathbb{Z}[i], K[x], K[[x]], \mathbb{R}\{x\}$ and $\mathbb{C}\{x\}$ are PID's.

1.30 Proposition

Let R be a PID and $0 \neq r \in R$.
a. r is irreducible if and only if $\langle r\rangle \triangleleft \cdot R$.
b. If r is irreducible, then r is prime.
c. $\operatorname{Spec}(R)=\mathfrak{m}-\operatorname{Spec}(R) \cup\{\langle 0\rangle\}$.

Proof: a. Assume first that r is irreducible. If $\langle r\rangle \subseteq\langle s\rangle \subseteq R$, then there is a $t \in R$ such that $r=s \cdot t$. Since r is irreducible either s is a unit or t is. But thus $\langle s\rangle=R$ or $\langle s\rangle=\langle r\rangle$, and hence $\langle r\rangle$ is maximal.
Assume now that $\langle r\rangle$ is maximal. If $r=s \cdot t$, then $\langle r\rangle \subseteq\langle s\rangle \subseteq R$ and by assumption either $\langle r\rangle=\langle s\rangle$ or $\langle s\rangle=R$. In the first case t must be a unit, in the latter case s must be. In any case, this implies that r is irreducible.
b. If r is irreducible, then by a. $\langle r\rangle$ is a maximal ideal. Thus it is a prime ideal, and therefore r is a prime element.
c. It suffices to show that every non-zero prime ideal is maximal. But if $0 \neq$ $P \in \operatorname{Spec}(R)$, then $P=\langle r\rangle$, since R is a PID. Thus r must be prime and we have already seen that every prime element is irreducible. By a. therefore $P \in \mathfrak{m}-\operatorname{Spec}(R)$.

1.31 Example

Let $R=\mathbb{Z}[\sqrt{-5}]=\{x+y \cdot \sqrt{-5} \mid x, y \in \mathbb{Z}\}$. We claim that $3 \in R$ is irreducible, but not prime. In particular, R is no PID and the converse of Proposition 1.30 b . is in general wrong.
Show first that $R^{*}=\{1,-1\}=\left\{\left.r \in R| | r\right|^{2}=1\right\}$. For this let $r=x+y \cdot \sqrt{-5} \in R^{*}$ be given, and let $s \in R$ be its inverse. Then

$$
1=|r \cdot s|^{2}=|r|^{2} \cdot|s|^{2}=\left(x^{2}+5 \cdot y^{2}\right) \cdot|s|^{2}
$$

and since $|s|^{2} \geq 1$ it follows that $x^{2}=1$ and $y^{2}=0$. Hence $r \in\{1,-1\}$.

We next show that 3 is irreducible. Suppose that $3=r \cdot s$ with $r=x+y \cdot \sqrt{-5}, s \notin R^{*}$. In particular $|r|^{2}$ and $|s|^{2}$ are integers strictly greater than one and thus

$$
9=3^{2}=|r \cdot s|^{2}=|r|^{2} \cdot|s|^{2}
$$

implies that $x^{2}+5 y^{2}=|r|^{2}=|s|^{2}=3$. This is, however, a contradiction to $x, y \in \mathbb{Z}$. We finally show that 3 is not a prime. Note that

$$
3 \mid 9=(2+\sqrt{-5}) \cdot(2-\sqrt{-5}) .
$$

Suppose that $3 \mid(2+\sqrt{-5})$ in R, then there is an $r=x+y \cdot \sqrt{-5} \in R$ such that $3 \cdot r=2+\sqrt{-5}$ and hence

$$
9 \cdot|r|^{2}=|2+\sqrt{-5}|^{2}=9 .
$$

This implies that $x^{2}+5 y^{2}=|r|^{2}=1$ and hence $r \in\{1,-1\}$, which clearly contradicts the fact that $3 \cdot r=2+\sqrt{-5}$. Thus $3 \not \backslash(2+\sqrt{-5})$, and similarly $3 \not \backslash(2-\sqrt{-5})$. This, however, shows that 3 is not a prime.

1.32 Corollary

If R is a PID, then R is a UFD.
Proof: Let $\mathcal{M}=\left\{\langle r\rangle \mid 0 \neq r \in R \backslash R^{*}, r\right.$ is not a finite product of irreducibles $\}$.
Suppose that $\mathcal{M} \neq \emptyset$. If

$$
\left\langle r_{1}\right\rangle \subseteq\left\langle r_{2}\right\rangle \subseteq\left\langle r_{3}\right\rangle \subseteq \ldots
$$

is a chain in \mathcal{M}, then

$$
I=\bigcup_{i=1}^{\infty}\left\langle r_{i}\right\rangle \unlhd R
$$

is an ideal in R. Since R is a PID we have $I=\langle s\rangle$ for some $s \in R$. But then there is some i such that $s \in\left\langle r_{i}\right\rangle$ and thus $I=\langle s\rangle \subseteq\left\langle r_{i}\right\rangle \subseteq I$. This shows $I=\left\langle r_{i}\right\rangle \in \mathcal{M}$ is an upper bound of this chain in \mathcal{M}.
By Zorn's Lemma there must be a $\langle r\rangle \in \mathcal{M}$ which is maximal in \mathcal{M}. Since $\langle r\rangle \in \mathcal{M}$ we know that r is not irreducible. Thus there are $s, t \in R \backslash R^{*}$ such that $r=s \cdot t$. This implies

$$
\langle r\rangle \varsubsetneqq\langle s\rangle \quad \text { and } \quad\langle r\rangle \varsubsetneqq\langle t\rangle \text {. }
$$

Due to the maximality of $\langle r\rangle$ we conclude that $\langle s\rangle,\langle t\rangle \notin \mathcal{M}$. In particular, there are irreducible elements $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{l} \in R$ such that $s=p_{1} \cdots p_{k}$ and $t=q_{1} \ldots q_{l}$. But then

$$
r=s \cdot t=p_{1} \cdots p_{k} \cdot q_{1} \cdots q_{l}
$$

is a product of finitely many irreducible elements in contradiction to $\langle r\rangle \in \mathcal{M}$.
Hence $\mathcal{M}=\emptyset$ and each $0 \neq r \in R \backslash R^{*}$ is a finite product of irreducible elements. By Proposition 1.30 it thus is also a finite product of prime elements and R is factorial.

1.33 Corollary

$\mathbb{Z}, \mathbb{Z}[i], K[x], K[[x]], \mathbb{R}\{x\}$ and $\mathbb{C}\{x\}$ are UFD's.

1.34 Proposition

The following statements are equivalent:
a. R is a UFD.
b. Every $0 \neq r \in R \backslash R^{*}$ is a finite product of irreducible elements and every irreducible element is prime.
c. Every $0 \neq r \in R \backslash R^{*}$ is a finite product of irreducible elements in a unique way, i.e. if $r=p_{1} \cdots p_{k}=q_{1} \cdots q_{l}$ with p_{i} and q_{i} irreducible for all i, then $k=l$ and there is a permutation $\sigma \in \operatorname{Sym}(k)$ such that p_{i} and $q_{\sigma(i)}$ are associated.

Proof: Let us first show that a. implies b.. We have already seen that any prime element is irreducible. Thus if R is a UFD and $0 \neq r \in R \backslash R^{*}$, then r is a finite product of irreducible elements. It remains to show that if r is irreducible, then r is prime. However, since R is a UFD we can write $r=p_{1} \cdots p_{k}$ for prime elements p_{i}, and since r is irreducible and the p_{i} are no units, we conclude that $k=1$ and $r=p_{1}$ is prime.
We next show that b. implies c.. Let $r=p_{1} \cdots p_{k}=q_{1} \cdots q_{l}$ with p_{i} and q_{i} irreducible and assume that k is the minimal number such that r can be decomposed into k irreducible factors. We show by induction on k that $k=l$ and that $\sigma \in \operatorname{Sym}(k)$ exists as claimed. If $k=1$, then $r=p_{1}=q_{1} \cdots q_{l}$ is irreducible and since the q_{i} are no units we conclude $l=1$ and $r=p_{1}=q_{1}$. If $k>1$, then

$$
p_{k} \mid p_{1} \cdots p_{k}=q_{1} \cdots q_{l}
$$

and since p_{k} is prime we conclude that $p_{k} \mid q_{i}$ for some i. Since p_{k} and q_{i} are both irreducible, they must be associated, i.e. $q_{i}=u \cdot p_{k}$ for some unit u. W.l.o.g. we may assume $i=l$ (this means applying a suitable σ to the indices). Thus

$$
p_{1} \cdots p_{k-1}=q_{1} \cdots q_{l-1} \cdot u^{-1}
$$

and by induction we are done by induction.
Let us finally show that c. implies a.. It suffices to show that every irreducible element is prime. Let p be irreducible and $p \mid s \cdot t$. By assumption s and t can be decomposed uniquely into products of irreducible elements, say

$$
s=p_{1} \cdots p_{k} \quad \text { and } t=p_{k+1} \cdots p_{l}
$$

Thus $p \mid p_{1} \cdots p_{l}$, and uniqueness implies the p must be associated some p_{i}. In particular $p \mid p_{i}$ and thus divides s or t.

1.35 Definition

Let R be a UFD and $r_{1}, \ldots, r_{k} \in R$.
a. We call $g \in R$ a greatest common divisor (short: gcd) of r_{1}, \ldots, r_{k} if and only if

$$
g \mid r_{i} \forall i=1, \ldots, k \quad \text { and } \quad\left(t\left|r_{i} \quad \forall i=1, \ldots, k \Longrightarrow t\right| g\right)
$$

if and only if
$g \mid r_{i} \forall i=1, \ldots, k \quad$ and $\quad \nexists p$ irreducible such that $p \left\lvert\, \frac{r_{i}}{g} \forall i=1\right., \ldots, k$.
Notation: $\operatorname{gcd}\left(r_{1}, \ldots, r_{k}\right)=\left\{g \in R \mid g\right.$ is a greatest common divisor of $\left.r_{1}, \ldots, r_{k}\right\}$. Obviously, $1 \in \operatorname{gcd}\left(r_{1}, \ldots, r_{k}\right)$ if and only if $\operatorname{gcd}\left(r_{1}, \ldots, r_{k}\right)=R^{*}$, and in this case we say that the r_{i} have no common divisor.
b. We call $l \in R$ a lowest common multiple (short: lcm) of r_{1}, \ldots, r_{k} if and only if

$$
r_{i} \mid l \quad \forall i=1, \ldots, k \quad \text { and } \quad\left(r_{i}|t \quad \forall i=1, \ldots, k \Longrightarrow l| t\right),
$$

and in case $k=2$ this holds if and only if

$$
r_{1}, r_{2} \mid l \quad \text { and } \quad \frac{r_{1} \cdot r_{2}}{l} \in \operatorname{gcd}\left(r_{1}, r_{2}\right) .
$$

Notation: $\operatorname{lcm}\left(r_{1}, \ldots, r_{k}\right)=\left\{l \in R \mid l\right.$ is a lowest common multiple of $\left.r_{1}, \ldots, r_{k}\right\}$.

1.36 Remark

If R is a PID, then:

$$
g \in \operatorname{gcd}\left(r_{1}, \ldots, r_{k}\right) \quad \Longleftrightarrow \quad\langle g\rangle=\left\langle r_{1}, \ldots, r_{k}\right\rangle
$$

and

$$
l \in \operatorname{lcm}\left(r_{1}, \ldots, r_{k}\right) \quad \Longleftrightarrow \quad\langle l\rangle=\left\langle r_{1}\right\rangle \cap \ldots \cap\left\langle r_{k}\right\rangle .
$$

Proof: The proof is an easy exercise using the definition and induction on k.

1.37 Lemma

Let R be an ID.
a. $R[x]^{*}=R^{*}$.
b. If $r \in R$ is irreducible in R, it is irreducible in $R[x]$.
c. If $r \in R$ is prime in R, it is prime in $R[x]$.

Proof: a. Clearly, $R^{*} \subseteq R[x]^{*}$. Let therefore $f \in R[x]^{*}$. Then there is a $g \in R[x]$ such that $f \cdot g=1$, and by the degree formula we have

$$
0=\operatorname{deg}(1)=\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

This implies $f, g \in R$, and therefore $f \in R^{*}$.
b. If $r=s \cdot t$ for $s, t \in R[x]$, then by the degree formula in integral domains we have

$$
0=\operatorname{deg}(r)=\operatorname{deg}(s)+\operatorname{deg}(t) .
$$

This implies that s and t must be constant polynomials, i.e. $s, t \in R$. But r is irreducible in R, thus $s \in R^{*}=R[x]^{*}$ or $t \in R^{*}=R[x]^{*}$ and we are done.
c. Let $r \mid s \cdot t=\sum_{k=0}^{m+n}\left(\sum_{l=0}^{k} s_{l} t_{k-l}\right) \cdot x^{k}$ where $s=\sum_{i=0}^{m} s_{i} x^{i}, t=\sum_{i=0}^{n} t_{i} x^{i} \in R[x]$ and where we set $s_{i}=0=t_{j}$ if $i>m$ or $j>n$. Suppose that $r \chi s$ and $r \chi t$. Since $r \in R$ this implies that there are i, j such that $r \not \backslash s_{i}$ and $r \not \bigwedge t_{j}$. Let i_{0} respectively j_{0} be minimal with the property that $r \Lambda s_{i_{0}}$ and $r \Lambda t_{j_{0}}$. Since $r \mid s \cdot t$ and r is constant r divides every coefficient of $s \cdot t$, in particular

$$
r \mid \sum_{l=0}^{i_{0}+j_{0}} s_{l} \cdot t_{k-l}
$$

But by the choice of i_{0} and j_{0} we know that r divides every summand except possibly $s_{i_{0}} \cdot t_{j_{0}}$, which then implies that r divides this one as well. However, r is prime and must therefore divide $s_{i_{0}}$ or $t_{j_{0}}$ in contradiction to the choice of i_{0} and j_{0}. This finishes the proof.

1.38 Theorem (Lemma of Gauß)

If R is a UFD, then $R[x]$ is a UFD.
Proof: Let $0 \neq f=\sum_{i=0}^{n} f_{i} x^{i} \in R[x] \backslash R[x]^{*}$ and $d \in \operatorname{gcd}\left(f_{0}, \ldots, f_{n}\right)$. Since R is a UFD and taking Lemma 1.37 into account there are $q_{1}, \ldots, q_{l} \in R$ irreducible in R and hence in $R[x]$ such that

$$
\begin{equation*}
d=q_{1} \cdots q_{l} . \tag{1}
\end{equation*}
$$

We define $f_{i}^{\prime}=\frac{f_{i}}{d}$ and $f^{\prime}=\frac{f}{d}=\sum_{i=0}^{n} f_{i}^{\prime} x^{i}$. Note that then the f_{i}^{\prime} have no common divisor, i.e.

$$
\operatorname{gcd}\left(f_{0}^{\prime}, \ldots, f_{n}^{\prime}\right)=R^{*}
$$

We first of all show that there are irreducible elements $p_{1}, \ldots, p_{k} \in R[x]$ such that $f=p_{1} \cdots p_{k}$ by induction on $n=\operatorname{deg}(f)=\operatorname{deg}\left(f^{\prime}\right)$. If $n=0$ then $f=d \in R$ and we are done by (1). Thus we may assume that $n>0$. In case f^{\prime} is irreducible, we have $f=d \cdot f^{\prime}=p_{1} \cdots p_{k} \cdot f^{\prime}$ is a product of finitely many irreducible polynomials in $R[x]$. It remains to consider the case where f^{\prime} is not irreducible. In that case $f^{\prime}=g \cdot h$ where neither $g \in R[x]^{*}$ nor $h \in R[x]^{*}$ is a unit. By the degree formula over integral domains we have

$$
n=\operatorname{deg}(f)=\operatorname{deg}(g)+\operatorname{deg}(h) .
$$

Suppose that $\operatorname{deg}(g)=0$, then $g \in R$ and hence g divides the coefficients of f^{\prime}, i.e. $g \mid f_{0}^{\prime}, \ldots f_{n}^{\prime}$. But since they do not have a common divisor, this implies $g \mid 1$, i.e. $g \in R^{*}=R[x]^{*}$, in contradiction to our assumption. Thus $\operatorname{deg}(g)>0$, and analogously $\operatorname{deg}(h)>0$, which implies $\operatorname{deg}(g), \operatorname{deg}(h)<n$. By induction g and h do
factorise in a finite product of irreducible elements as well as d does by (1), hence so does $f=d \cdot g \cdot h$.
By Proposition 1.34 it remains to show that each irreducible polynomial $f \in R[x]$ is actually prime. We postpone this to Lemma 3.15, since we need the notion of the quotient field of R which we have not yet introduced.

1.39 Corollary

If K is a field, then $K\left[x_{1}, \ldots, x_{n}\right]$ is a UFD.

1.40 Corollary

$R[x]$ is a PID if and only if R is a field.
In particular, $K\left[x_{1}, \ldots, x_{n}\right]$ is not a PID once $n \geq 2$.
Proof: If R is a field we have seen in Corollary 1.29 that $R[x]$ is a PID.
For the converse consider the R-algebra homomorphism

$$
\varphi: R[x] \rightarrow R: f \mapsto f(0) .
$$

By the Homomorphism Theorem we have $R[x] / \operatorname{ker}(\varphi) \cong R$, and since R is an integral domain this implies that $\operatorname{ker}(\varphi)$ must be a prime ideal. However, $\operatorname{ker}(\varphi)$ is not the zero ideal, since $x \in \operatorname{ker}(\varphi)$, and hence by Proposition 1.30 it is indeed a maximal ideal. Thus $R \cong R[x] / \operatorname{ker}(\varphi)$ is a field.

1.41 Theorem

$\mathbb{Z}[\omega]=\{a+b \cdot \omega \mid a, b \in \mathbb{Z}\} \leq \mathbb{C}$, with $\omega=\frac{1+\sqrt{-19}}{2} \in \mathbb{C}$, is a PID, but it is not Euclidean.
The proof of this theorem needs some preparation.

1.42 Proposition

Let R be an ID.
Then R is a PID if and only if there exists a function $\alpha: R \rightarrow \mathbb{N}$ such that

$$
\forall a \in R, 0 \neq b \in R \text { s.t. } b \not \backslash a \quad \exists u, v \in R: \alpha(0)<\alpha(u a-v b)<\alpha(b) .
$$

You may consider $u a-v b$ as a greatest common divisor of a and b, so that the existence of α basically means that the ideal $\langle a, b\rangle$ is principle and generated by a greatest common divisor.

Proof: Let us first assume R is a PID, and hence by Corollary 1.32 it is a UFD. We now define $\alpha: R \rightarrow \mathbb{N}$ by

$$
\alpha(r)= \begin{cases}0, & \text { if } r=0 \\ 1, & \text { if } r \in R^{*} \\ 1+k & \text { if } r=p_{1} \cdots p_{k} \text { with } p_{i} \text { irreducible }\end{cases}
$$

Given $a, b \in R$ with $0 \neq b \nmid a$ we choose $g \in \operatorname{gcd}(a, b)$. Then by definition

$$
\alpha(0)=0<\alpha(g)<\alpha(b),
$$

and by Remark 1.36 we have

$$
\langle g\rangle=\langle a, b\rangle .
$$

This, however, implies that $g=a \cdot u-b \cdot v$ for suitable $u, v \in R$.
Let us now assume that the desired function α exists, and let $0 \neq I \unlhd R$ be given. We may choose $0 \neq b \in I$ with $\alpha(b)$ minimal, and we claim $I=\langle b\rangle$. Suppose there is some $a \in I \backslash\langle b\rangle$, then $b \not \backslash a$ and by assumption there are $u, v \in R$ such that

$$
\alpha(0)<\alpha(u a-v b)<\alpha(b) .
$$

In particular, $0 \neq u a-v b \in I$ in contradiction to the assumption that $\alpha(b)$ is minimal. Thus $I=\langle b\rangle$.

1.43 Proposition

Let R be a Euclidean ring via $\nu: R \backslash\{0\} \rightarrow \mathbb{N}$, let $0 \neq p \in R \backslash R^{*}$ with $\nu(p)$ minimal, and let $\pi: R \rightarrow R /\langle p\rangle: a \mapsto \bar{a}$ be the residue map. Then the following statements hold:
a. p is prime and $K:=R /\langle p\rangle$ is a field.
b. If $a \in R$, then there are $q, r \in R$ such that $a=q \cdot p+r$ with $r=0$ or $r \in R^{*}$.
c. $\pi\left(R^{*}\right)=K^{*}$.

Proof: Let $a \in R$ be given. Since R is Euclidean there exists $q, r \in R$ such that $a=q \cdot p+r$ with $r=0$ or $\nu(r)<\nu(p)$. By the choice of p this implies $r=0$ or $r \in R^{*}$, which proves b..
Moreover, $\pi(a)=\pi(r)=0$ or $\pi(a)=\pi(r) \in \pi\left(R^{*}\right) \subseteq K^{*}$, since units are mapped to units by ring homomorphisms. Since π is surjective we get

$$
K=\pi(R)=\{0\} \cup \pi\left(R^{*}\right) \subseteq\{0\} \cup K^{*}=K
$$

and thus $K=\{0\} \cup K^{*}$, which implies that $\pi\left(R^{*}\right)=K^{*}$, that is c., and that K is a field. But then $\langle p\rangle \triangleleft \cdot R$ and p must be prime element, which finally proves a..

Proof of Theorem 1.41 (see [Bru00] p. 90f.): For $a+b \omega \in \mathbb{Z}[\omega]$ with $a, b \in \mathbb{Z}$ we define $N: R \rightarrow \mathbb{N}$ by

$$
N(a+b \omega)=|a+b \omega|^{2}=\left(a+\frac{b}{2}\right)^{2}+19 \cdot \frac{b^{2}}{4}=a^{2}+a b+5 b^{2} \in \mathbb{N} .
$$

We first of all show that $R^{*}=\{1,-1\}=\{x \in R \mid N(x)=1\}$. For this suppose that $1=x \cdot y$ for $x=a+b \omega, y \in R$. Then

$$
1=|x|^{2} \cdot|y|^{2}
$$

where both factors are natural numbers. This implies that

$$
1=|x|^{2}=N(x)=\left(a+\frac{b}{2}\right)^{2}+19 \cdot \frac{b^{2}}{4}
$$

and thus $b^{2}=0$ and $\left(a+\frac{b}{2}\right)^{2}=1$, i.e. $b=0$ and $a \in\{1,-1\}$.
We next claim that 2 and 3 are irreducible in R. Suppose that $2=x \cdot y$ for $=a+b \omega, y \in R \backslash R^{*}$, then

$$
4=|x|^{2} \cdot|y|^{2}=N(x) \cdot N(y)
$$

and $N(x), N(y)>1$. Both being natural numbers this implies

$$
2=N(y)=N(x)=\left(a+\frac{b}{2}\right)^{2}+19 \cdot \frac{b^{2}}{4}
$$

But then $b^{2}=0$ and hence $b=0$, which gives $a^{2}=2$ for an integer a. Thus we have derived the desired contradiction, and 2 is irreducible. The proof for 3 works analogously.

Next we show that R is not Euclidean. Suppose R was Euclidean. Then we may choose $p \in R$ as in Proposition 1.43 and we deduce with the notation from that proposition

$$
|R /\langle p\rangle|=|K| \leq\left|R^{*}\right|+1=3 .
$$

Since $R /\langle 2\rangle=\{\overline{0}, \overline{1}, \overline{\sqrt{-19}}, \overline{1+\sqrt{-19}}\}$ has four elements we know that $p \neq 2$. Thus there are elements $q, r \in R$ such that $2=q \cdot p+r$ and, since 2 is irreducible, $r \neq 0$, which implies that $r \in R^{*}=\{1,-1\}$ is a unit. If $r=1$, then $1=q \cdot p$ in contradiction to p being prime. If $r=-1$, then $3=q \cdot p$, and since 3 is irreducible we get $\langle 3\rangle=\langle p\rangle$. However,

$$
R /\langle 3\rangle=\{\overline{0}, \overline{1}, \overline{2}, \overline{\sqrt{-19}}, \overline{1+\sqrt{-19}}, \overline{2+\sqrt{-19}}\}
$$

in contradiction to the fact that K has only 3 elements. This shows that R cannot be Euclidean.

We claim that

$$
\begin{equation*}
\forall x, y \in R: 0 \neq y \npreceq x \quad \exists u, v \in R: 0<\left|u \cdot \frac{x}{y}-v\right|^{2}<1, \tag{2}
\end{equation*}
$$

where the calculations are done in \mathbb{C}. Note that actually $\frac{x}{y} \in \mathbb{Q}[\omega]$, that is

$$
\begin{array}{r}
\exists a^{\prime}, b^{\prime}, a, b, q, s \in \mathbb{Z} \text { with } 0 \leq a<q, 0 \leq b<s, 1 \in \operatorname{gcd}(a, q) \text { and } 1 \in \operatorname{gcd}(b, s) \\
\text { such that } \frac{x}{y}=\left(a^{\prime}+\frac{a}{q}\right)+\left(b^{\prime}+\frac{b}{s}\right) \cdot \omega .
\end{array}
$$

If we now find $u^{\prime}, v^{\prime} \in R$ such that

$$
0<\left|u^{\prime} \cdot\left(\frac{a}{q}+\frac{b}{s} \cdot \omega\right)-v^{\prime}\right|<1
$$

then $u=u^{\prime}$ and $v=v^{\prime}+u^{\prime} \cdot\left(a^{\prime}+b^{\prime} \cdot \omega\right)$ works, since
$u \cdot \frac{x}{y}-v=u^{\prime} \cdot\left(\frac{a}{q}+\frac{b}{s} \cdot \omega\right)+u^{\prime} \cdot\left(a^{\prime}+b^{\prime} \cdot \omega\right)-v^{\prime}-u^{\prime} \cdot\left(a^{\prime}+b^{\prime} \cdot \omega\right)=u^{\prime} \cdot\left(\frac{a}{q}+\frac{b}{s} \cdot \omega\right)-v^{\prime}$.
We may, therefore, assume that $a^{\prime}=b^{\prime}=0$.
If $b=0$, then we are done by $u=1$ and $v=0$. Thus we may assume $b \neq 0$.
If $q \nmid s$, then $s \cdot a \not \equiv 0(\bmod q)$, and there exists $0<d<q$ and $c \in \mathbb{Z}$ such that $s a=c q+d$. Thus

$$
\left|s \cdot \frac{x}{y}-(c+b \omega)\right|^{2}=\left|\frac{s a}{q}+b \omega-c-b \omega\right|^{2}=\left|\frac{d}{q}\right|^{2}
$$

where the right hand side is strictly between 0 and 1 . Thus we are done with $u=s$ and $v=c+b \omega$.
If $q \mid s$ and $s>2$, then, since s and b have no common divisor, there exists an $m \in \mathbb{Z}$ such that $m \cdot b \equiv 1(\bmod s)$. Thus

$$
\frac{m a}{q}+\frac{m b}{s} \cdot \omega=\left(l+\frac{a_{1}}{a_{2}}\right)+\left(k+\frac{1}{s}\right) \cdot \omega
$$

for suitable $l, k, a_{1}, a_{2} \in \mathbb{Z}$ such that $\left|\frac{a_{1}}{a_{2}}\right| \leq \frac{1}{2}$. Setting $u=m$ and $v=l+k \omega$ we get

$$
\begin{aligned}
\left|u \cdot \frac{x}{y}-v\right|^{2}=\left\lvert\, \frac{a_{1}}{a_{2}}+\right. & \left.\frac{1}{s} \cdot \frac{1+\sqrt{-19}}{2}\right|^{2} \\
=\left(\frac{a_{1}}{a_{2}}+\frac{1}{2 s}\right)^{2}+\frac{19}{4 s^{2}}=\frac{a_{1}^{2}}{a_{2}^{2}}+\frac{a_{1}}{a_{2} s} & +\frac{20}{4 s^{2}} \\
& \leq \frac{1}{4}+\frac{1}{6}+\frac{20}{36}=\frac{35}{36}<1,
\end{aligned}
$$

and we are done.
Finally, if $q \mid s$ and $s=2$, then $q=s=2$ and $\frac{x}{y}=\frac{\omega}{2}$ or $\frac{x}{y}=\frac{1+\omega}{2}$. In the first case we set $u=1+\omega$ and $v=-2+\omega$, in the second case we set $u=\omega$ and $v=-2+\omega$. So, in any case we have

$$
\left|u \cdot \frac{x}{y}-v\right|^{2}=\left|-\frac{1}{2}\right|^{2}=\frac{1}{4}<1,
$$

and we are done.
We conclude that (2) holds, which implies that $\alpha=N$ is a function as required in Proposition 1.42, and thus R is a PID.

1.44 Remark

For the following results see [Bru00], Chapter 8-10, and [ScS88], pp. 154ff, p. 168 Exercise 40, p. 167 Exercise 31c. and p. 186 Exercise 23.
a. $K=\mathbb{Q}[x] /\langle f\rangle$ with $\operatorname{deg}(f)=2$ if and only if $K=\mathbb{Q}[\sqrt{d}]$ for some squarefree $d \in \mathbb{Z} \backslash\{0,1\}$. If $f=x^{2}+a x+b$, then $d=\frac{a^{2}}{4}-b$ is its discriminant.
b. If d is such a squarefree number, then $\mathbb{Z}\left[\omega_{d}\right]=\{a \in \mathbb{Q}[\sqrt{d}] \mid a$ is integral over $\mathbb{Z}\}$ for

$$
\omega_{d}=\left\{\begin{array}{cl}
\sqrt{d}, & \text { if } d \equiv 2,3(\bmod 4), \\
\frac{1+\sqrt{d}}{2}, & \text { if } d \equiv 1(\bmod 4) .
\end{array}\right.
$$

c. $\mathbb{Z}\left[\omega_{d}\right]$ is a UFD if and only if it is a PID.
d. If $d \leq-1$, then
(i) $\mathbb{Z}\left[\omega_{d}\right]$ is a UFD if and only if $d \in\{-1,-2,-3,-7,-11,-19,-43,-67,-163\}$.
(ii) $\mathbb{Z}\left[\omega_{d}\right]$ is a UFD if and only if $d \in\{-1,-2,-3,-7,-11\}$.
e. $\mathbb{R}[x, y] /\left\langle x^{2}+y^{2}+1\right\rangle$ is a PID, but not Euclidean.

1.45 Remark

We have seen (Theorem 1.41 and Corollaries 1.39 and 1.40) that

$$
R \text { is Euclidean } \Longrightarrow R \text { is a PID } \Longrightarrow R \text { is a UFD, }
$$

and that neither of the converses holds!

References

[AtM69] Michael F. Atiyah and Ian G. MacDonald, Introduction to commutative algebra, AddisonWesley, 1969.
[Bru00] Winfried Bruns, Zahlentheorie, OSM, Reihe V, no. 146, FB Mathematik/Informatik, Universität Osnabrück, 2000.
[ScS88] Günter Scheja and Uwe Storch, Lehrbuch der Algebra, Mathematische Leitfäden, vol. II, Teubner, 1988.

Universität Kaiserslautern, Fachbereich Mathematik, Erwin-Schrödinger-Strasse, D - 67663 Kaiserslautern
E-mail address: keilen@mathematik.uni-kl.de
URL: http://www.mathematik.uni-kl.de/~keilen

