Fachbereich Mathematik
Winter Semester 2007/08, Set 2
Thomas Markwig
Henning Meyer

Commutative Algebra

Due date: Friday, 02/11/2007, 14h00
Exercise 4: Let R be a ring. Obviously $R \hookrightarrow R\left[x_{1}, \ldots, x_{n}\right]: a \mapsto a$ is a ring homomorphism and thus makes $R\left[x_{1}, \ldots, x_{n}\right]$ an R-algebra.
a. Show that $R\left[x_{1}, \ldots, x_{n}\right]$ satisfies the following universal property: if $\left(R^{\prime}, \varphi\right)$ is any R-algebra and $a_{1}, \ldots, a_{n} \in R^{\prime}$ are given, then there is a unique R-algebra homomorphism $\alpha: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow R^{\prime}$ such that $\alpha\left(x_{i}\right)=a_{i}$ for all $i=1, \ldots, n$.
b. Let $\mathrm{I} \unlhd \mathrm{R}\left[x_{1}, \ldots, x_{n}\right]$ and $\mathrm{J} \unlhd \mathrm{R}\left[\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}\right]$. Show that the following are equivalent:
(a) $\varphi: R\left[x_{1}, \ldots, x_{n}\right] / I \rightarrow R\left[y_{1}, \ldots, y_{m}\right] / J$ is an R-algebra homomorphism
(b) There are $f_{1}, \ldots, f_{n} \in R\left[y_{1}, \ldots, y_{m}\right]$ such that $g\left(f_{1}, \ldots, f_{n}\right) \in J$ for all $g \in I$ and $\varphi(\bar{g})=\overline{g\left(f_{1}, \ldots, f_{n}\right)}$ for all $\bar{g} \in R\left[x_{1}, \ldots, x_{n}\right] / I$.
(c) There is an R-algebra homomorphism $\psi: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow R\left[y_{1}, \ldots, y_{m}\right]$ such that $\psi(\mathrm{I}) \subseteq \mathrm{J}$ and $\varphi(\overline{\mathrm{g}})=\overline{\psi(\mathrm{g})}$.

Note, a. means: we may uniquely define an R-algebra homomorphism on $R\left[x_{1}, \ldots, x_{n}\right]$ by just specifying the images of the x_{i} !
Exercise 5: Let R be a ring and $I, J_{1}, \ldots, J_{n} \unlhd R$. Show that:
a. $I:\left(\sum_{i=1}^{n} J_{i}\right)=\bigcap_{i=1}^{n}\left(I: J_{i}\right)$.
b. $\left(\bigcap_{i=1}^{n} J_{i}\right): I=\bigcap_{i=1}^{n}\left(J_{i}: I\right)$.
c. $\sqrt{J_{1} \cap \ldots \cap J_{n}}=\sqrt{J_{1}} \cap \ldots \cap \sqrt{J_{n}}$.
d. $\sqrt{J_{1}+\ldots+J_{n}} \supseteq \sqrt{J_{1}}+\ldots+\sqrt{J_{n}}$.

Exercise 6: Let R be a ring and $f=\sum_{n=0}^{\infty} a_{n} x^{n} \in R[[x]]$ a formal power series over R. Show:
a. f is a unit if and only if a_{0} is a unit in R.
b. What are the units in $K[[x]]$ if K is a field?
c. x is not a zero-divisor in $R[[x]]$.
d. If f is nilpotent, then a_{n} is nilpotent for all n. Is the converse true?

