Fachbereich Mathematik Thomas Markwig Winter Semester 2007/08, Set 3 Henning Meyer

Commutative Algebra

Due date: Friday, 09/11/2007, 14h00

Exercise 8: Let R be a ring such that for every $r \in R$ there is an n = n(r) > 1 such that $r^n = r$.

- a. Show that $\operatorname{Spec}(R) = \mathfrak{m} \operatorname{Spec}(R)$.
- b. Give an example of such a ring R which is not a field.

Exercise 9: Let $R \neq 0$ be a ring. Show that Spec(R) has a minimal element with respect to inclusion, i. e. $\exists P_0 \in \text{Spec}(R) : \forall P \in \text{Spec}(R)$ with $P \subseteq P_0$ we have $P = P_0$. Hint, use Zorn's Lemma with a suitable partial ordering on the set of all prime ideals.

Exercise 10: Let R be a ring and N(R) its nil-radical. Show the following are equivalent:

- a. R/N(R) is a field.
- b. |Spec(R)| = 1.
- c. Every element of R is either unit or nilpotent.

Give an example for such a ring which is not a field.

Exercise 11: Let $d \in \mathbb{Z}$ be a squarefree, negative integer. Show that $\mathbb{Z}[\sqrt{d}]$ is a UFD if and only if $d \in \{-1, -2\}$.

Hint, show that 2 is not a prime, but if d < -2 it is irreducible. For the "non-primeness" note that either $2 \mid d$ or $2 \mid d-1$, and note that in $\mathbb{Q}\left[\sqrt{d}\right]$ every element is *uniquely* expressible as $a + b \cdot \sqrt{d}$ – why?