Commutative Algebra

Due date: Friday, 16/11/2007, 14h00

Exercise 12: Let M be an R-module.

- a. Prove that $\mu: M \to Hom_R(R, M)$ with $\mu(\mathfrak{m}): R \to M: r \mapsto r \cdot \mathfrak{m}$ is an isomorphism.
- b. Give an example where $M \ncong Hom_R(M, R)$.

Exercise 13: Let R be an integral domain and $0 \neq I \subseteq R$.

Show that I as R-module is free if and only if I is principal.

Exercise 14: Let $R = \mathbb{R}[[x]]$ be the ring of formal power series over the real numbers. Consider the R-linear map $\varphi : R^3 \to R^2 : m \mapsto A \cdot m$ where

$$A = \begin{pmatrix} 1 + x^4 - x^7 + 3x^{100} & \cos(x) & 2 - \exp(x) \\ x^4 - 5x^8 & \sum_{i=0}^{\infty} (5x + x^2)^i & 0 \end{pmatrix} \in Mat(2 \times 3, R).$$

Is φ an epimorphism?

Exercise 15: Let $\mathfrak{p} \in \mathbb{Z}$ be a prime number. Consider the subring $R = \left\{\frac{\mathfrak{a}}{\mathfrak{b}} \mid \mathfrak{a}, \mathfrak{b} \in \mathbb{Z}, \mathfrak{p} \mid / \mathfrak{b}\right\} \leq \mathbb{Q}$ of the rational numbers, and consider $M = \mathbb{Q}$ as an R-module.

- a. Show that R is local with maximal ideal $\mathfrak{m} = \left\{ \frac{\mathfrak{a}}{\mathfrak{b}} \mid \mathfrak{a}, \mathfrak{b} \in \mathbb{Z}, \mathfrak{p} \not | \mathfrak{b}, \mathfrak{p} \mid \mathfrak{a} \right\}$.
- b. $\mathfrak{m} \cdot M = M$, but $M \neq 0$.
- c. Find a set of generators for M.