Fachbereich Mathematik Thomas Markwig Winter Semester 2007/08, Set 5 Henning Meyer

## **Commutative Algebra**

Due date: Friday, 23/11/2007, 14h00

**Exercise 16:** Let R be a ring, M a finitely generated R-module and  $\varphi \in \text{Hom}_{R}(M, \mathbb{R}^{n})$  surjective. Show that ker( $\varphi$ ) is finitely generated as an R-module.

Hint, note that the short exact sequence  $0\to \text{ker}(\phi)\to M\to R^n\to 0$  is split exact.

**Exercise 17:** Let R be a ring and P an R-module. Show that the following statements are equivalent:

a. If  $\phi \in \text{Hom}_R(M, N)$  is surjective and  $\psi \in \text{Hom}_R(P, N)$ , then there is a  $\alpha \in \text{Hom}_R(P, M)$  such that  $\phi \circ \alpha = \psi$ , i.e.



- b. If  $\phi \in Hom_R(M, N)$  is surjective, then  $\phi_* : Hom_R(P, M) \to Hom_R(P, N) : \alpha \mapsto \phi \circ \alpha$  is surjective.
- c. If  $0 \to M \to N \to P \to 0$  is exact, then it is split exact.
- d. There is free module F and a submodule  $M \leq F$  such that  $P \oplus M \cong F.$

**Exercise 18:** Let  $0 \to M' \to M \to M'' \to 0$  be an exact sequence of R-modules. Show, if M' and M'' are finitely generated, then so is M.

Hint, you can do the proof using the Snake Lemma and the fact that a free module is projective. Alternatively you can simply write down a set of generators.

**Exercise 19:** Let R be a ring, M, M' and M'' R-modules,  $\varphi \in \text{Hom}_{R}(M', M)$  and  $\psi \in \text{Hom}_{R}(M, M'')$ .

Show that

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \longrightarrow 0$$

is exact if and only if for all R-modules P the sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathsf{R}}(\mathsf{M}'',\mathsf{P}) \xrightarrow{\Psi^*} \operatorname{Hom}_{\mathsf{R}}(\mathsf{M},\mathsf{P}) \xrightarrow{\phi^*} \operatorname{Hom}_{\mathsf{R}}(\mathsf{M}',\mathsf{P})$$

is exact.