Fachbereich Mathematik
Winter Semester 2007/08, Set 9
Thomas Markwig

Commutative Algebra

Due date: Friday, 21/12/2007, 14h00

Exercise 32:

a. Let $\varphi: R \rightarrow R^{\prime}$ be a ring homomorphism and $\mathrm{Q} \triangleleft \mathrm{R}^{\prime}$ a P-primary ideal. Show that $Q^{c}=\varphi^{-1}(Q)$ is $P^{c}=\varphi^{-1}(P)$-primary.
b. Let R be a ring, $P \in \operatorname{Spec}(R)$, and $n \geq 1$. Show that the symbolic power $P^{(n)}:=$ $\left\{a \in R \mid \exists s \in R \backslash P: s \cdot a \in P^{n}\right\}$ is a P-primary ideal.

Note, if $\imath: R \rightarrow R_{P}: a \mapsto \frac{a}{1}$, then $P^{(n)}=\left(\left(P^{n}\right)^{e}\right)^{c}=\iota^{-1}\left(\left\langle P^{n}\right\rangle_{R_{P}}\right)$.
Exercise 33: Let R be a integral domain of $\operatorname{dimension} \operatorname{dim}(R)=1$, and let $0 \neq I \unlhd R$.
a. Show if $I=Q_{1} \cap \ldots \cap Q_{n}$ is a minimal primary decomposition, then $I=Q_{1} \cdots Q_{n}$.
b. If R is noetherian, then every non-zero ideal I is a finite product of primary ideals Q_{i} with $\sqrt{Q_{i}} \neq \sqrt{Q_{j}}$ for $i \neq j$, and the factors are unique up to ordering.

Hint, Chinese Remainder Theorem.

Exercise 34: Find a minimal primary decomposition of $\mathrm{I}=\langle 6\rangle \triangleleft \mathbb{Z}[\sqrt{-5}]$.
Hint, consider the ideals $P=\langle 2,1+\sqrt{-5}\rangle, \mathrm{Q}=\langle 3,1+\sqrt{-5}\rangle$, and $\mathrm{Q}^{\prime}=\langle 3,1-\sqrt{-5}\rangle$.

Exercise 35: Let $R=K[x, y, z]$ for some field K.
a. Let $\mathrm{P}=\langle\mathrm{x}, \mathrm{y}\rangle$ and $\mathrm{Q}=\langle\mathrm{y}, z\rangle$. Calculate a minimal primary decomposition of $I=P \cdot Q$. Which of the components are isolated, which are embedded?
b. Calculate a primary decomposition of $\mathrm{J}=\left\langle x z-y^{2}, y-x^{2}\right\rangle$.

Hint, in part b. consider $\varphi: R \rightarrow K[x]$ with $x \mapsto x, y \mapsto x^{2}, z \mapsto x^{3}, P=\operatorname{ker}(\varphi)$, and $Q=\langle x, y\rangle$. Show that $\operatorname{ker}(\varphi)=$ $\left\langle y-x^{2}, z-x^{3}\right\rangle$ using division with remainder.

