Fachbereich Mathematik
Winter Semester 2007/08, Set 11
Thomas Markwig
Henning Meyer

Commutative Algebra

Due date: Friday, 31/01/2006, 14h00
Exercise 42 a., b. and c. need NOT be handed in for marking.
Exercise 40: Let $R \subset R^{\prime}$ be an integral ring extension and let $\mathfrak{m}^{\prime} \triangleleft \cdot R^{\prime}$ be a maximal ideal such that $\mathfrak{m}=\mathfrak{m}^{\prime} \cap R \triangleleft \cdot R$ is maximal as well. Is then $R_{\mathfrak{m}^{\prime}}^{\prime}$ integral over R_{m} ?
Hint, consider $R=K\left[x^{2}-1\right], R^{\prime}=K[x], \mathfrak{m}^{\prime}=\langle x-1\rangle$, and $f=\frac{1}{1+x} \in R_{m}^{\prime}$,
Exercise 41: Let $R \subset R^{\prime}$ be integral domains and $f, g \in R^{\prime}[x]$ be monic polynomials. Show that if $f \cdot g \in \operatorname{Int}_{R^{\prime}}(R)[x]$, then $f, g \in \operatorname{Int}_{R^{\prime}}(R)[x]$.

Note, if we apply this to $R=\mathbb{Z}$ and $R^{\prime}=\mathbb{Q}$, then we get for monic $f, g \in \mathbb{Q}[x]$ that $f \cdot g \in \mathbb{Z}[x]$ implies $f, g \in \mathbb{Z}[x]$.

Exercise 42: [Rings of Integers of Guadratic Number Fields]

Let $d \in \mathbb{Z} \backslash\{0,1\}$ be a squarefree number (i.e. no square a^{2} divides d), then $\mathbb{Q}[\sqrt{d}]=$ $\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$ is a field extension of \mathbb{Q} with $\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}[\sqrt{d}]=2$. Consider the conjugation

$$
C: \mathbb{Q}[\sqrt{d}] \longrightarrow \mathbb{Q}[\sqrt{d}]: a+b \sqrt{d} \mapsto a-b \sqrt{d}
$$

the norm

$$
N: \mathbb{Q}[\sqrt{d}] \longrightarrow \mathbb{Q}: a+b \sqrt{d} \mapsto(a+b \sqrt{d}) \cdot C(a+b \sqrt{d})=a^{2}-b^{2} d
$$

and the trace

$$
T: \mathbb{Q}[\sqrt{d}] \longrightarrow \mathbb{Q}: a+b \sqrt{d} \mapsto(a+b \sqrt{d})+C(a+b \sqrt{d})=2 a
$$

Show:
a. $C(x \cdot y)=C(x) \cdot C(y)$ and $N(x \cdot y)=N(x) \cdot N(y)$ for $x, y \in \mathbb{Q}[\sqrt{d}]$.
b. C and T are Q -linear.
c. If $x \in \mathbb{Q}[\sqrt{d}] \backslash \mathbb{Q}$, then $\mu_{x}=(t-x) \cdot(t-C(x))=t^{2}-T(x) \cdot t+N(x) \in \mathbb{Q}[t]$ is the minimal polynomial of x over \mathbb{Q}.
d. $x \in \mathbb{Q}[\sqrt{d}]$ is integral over \mathbb{Z} if and only if $T(x)$ and $N(x)$ are integers.
e. $\quad \operatorname{Int}_{\mathbb{Q}[\sqrt{d}]}(\mathbb{Z})=\mathbb{Z}\left[\omega_{d}\right]$, where $\omega_{d}= \begin{cases}\sqrt{d}, & \text { if } d \equiv 2,3 \bmod 4 \\ \frac{1+\sqrt{d}}{2}, & \text { if } d \equiv 1 \bmod 4 .\end{cases}$

