Commutative Algebra

Due date: Friday, 31/01/2006, 14h00

Exercise 42 a., b. and c. need NOT be handed in for marking.

Exercise 40: Let $R \subset R'$ be an integral ring extension and let $\mathfrak{m}' \lhd \cdot R'$ be a maximal ideal such that $\mathfrak{m} = \mathfrak{m}' \cap R \lhd \cdot R$ is maximal as well. Is then $R'_{\mathfrak{m}'}$ integral over $R_{\mathfrak{m}}$? Hint, consider $R = K[x^2 - 1]$, R' = K[x], $\mathfrak{m}' = \langle x - 1 \rangle$, and $f = \frac{1}{1+x} \in R'_{\mathfrak{m}'}$.

Exercise 41: Let $R \subset R'$ be integral domains and $f, g \in R'[x]$ be monic polynomials. Show that if $f \cdot g \in Int_{R'}(R)[x]$, then $f, g \in Int_{R'}(R)[x]$.

Note, if we apply this to $R=\mathbb{Z}$ and $R'=\mathbb{Q}$, then we get for monic $f,g\in\mathbb{Q}[x]$ that $f\cdot g\in\mathbb{Z}[x]$ implies $f,g\in\mathbb{Z}[x]$.

Exercise 42: [Rings of Integers of Quadratic Number Fields]

Let $d \in \mathbb{Z} \setminus \{0,1\}$ be a squarefree number (i.e. no square a^2 divides d), then $\mathbb{Q}\big[\sqrt{d}\,\big] = \{a+b\sqrt{d} \mid a,b\in\mathbb{Q}\}$ is a field extension of \mathbb{Q} with $\dim_{\mathbb{Q}}\mathbb{Q}\big[\sqrt{d}\,\big] = 2$. Consider the conjugation

$$C: \mathbb{Q}[\sqrt{d}] \longrightarrow \mathbb{Q}[\sqrt{d}]: a + b\sqrt{d} \mapsto a - b\sqrt{d},$$

the norm

$$N: \mathbb{Q}[\sqrt{d}] \longrightarrow \mathbb{Q}: a + b\sqrt{d} \mapsto (a + b\sqrt{d}) \cdot C(a + b\sqrt{d}) = a^2 - b^2d,$$

and the trace

$$\mathsf{T}:\mathbb{Q}\big[\sqrt{d}\,\big]\longrightarrow\mathbb{Q}:\mathfrak{a}+\mathfrak{b}\sqrt{d}\mapsto(\mathfrak{a}+\mathfrak{b}\sqrt{d})+\mathsf{C}(\mathfrak{a}+\mathfrak{b}\sqrt{d})=2\mathfrak{a}.$$

Show:

a.
$$C(x \cdot y) = C(x) \cdot C(y)$$
 and $N(x \cdot y) = N(x) \cdot N(y)$ for $x, y \in \mathbb{Q}[\sqrt{d}]$.

- b. C and T are Q-linear.
- c. If $x \in \mathbb{Q}\big[\sqrt{d}\,\big] \setminus \mathbb{Q}$, then $\mu_x = (t-x) \cdot \big(t-C(x)\big) = t^2 T(x) \cdot t + N(x) \in \mathbb{Q}[t]$ is the minimal polynomial of x over \mathbb{Q} .
- d. $x \in \mathbb{Q}\lceil \sqrt{d} \rceil$ is integral over \mathbb{Z} if and only if T(x) and N(x) are integers.

$$e. \ \, Int_{\mathbb{Q}\left[\sqrt{d}\right]}(\mathbb{Z}) = \mathbb{Z}[\omega_d], \, where \, \omega_d = \left\{ \begin{array}{ll} \sqrt{d}, & \text{if } d \equiv 2,3 \mod 4 \\ \frac{1+\sqrt{d}}{2}, & \text{if } d \equiv 1 \mod 4. \end{array} \right.$$