Fachbereich Mathematik Thomas Markwig Winter Semester 2009/10, Set 2 Simon Hampe

Commutative Algebra

Due date: Friday, 06/11/2009, 14h00

The in-class exercises need not be handed in for marking. They should be discussed in class. No rigorous proofs are expected for these.

Exercise 4: Let R be a ring. Obviously $R \hookrightarrow R[x_1, \ldots, x_n] : a \mapsto a$ is a ring homomorphism and thus makes $R[x_1, \ldots, x_n]$ an R-algebra.

- a. Show that $R[x_1, \ldots, x_n]$ satisfies the following universal property: if (R', ϕ) is any R-algebra and $a_1, \ldots, a_n \in R'$ are given, then there is a unique R-algebra homomorphism $\alpha : R[x_1, \ldots, x_n] \to R'$ such that $\alpha(x_i) = a_i$ for all $i = 1, \ldots, n$.
- b. Let $I \subseteq R[x_1, \ldots, x_n]$ and $J \subseteq R[y_1, \ldots, y_m]$. Show that the following are equivalent:
 - (a) $\phi: R[x_1,\ldots,x_n]/I \to R[y_1,\ldots,y_m]/J$ is an R-algebra homomorphism
 - (b) There are $f_1, \ldots, f_n \in R[y_1, \ldots, y_m]$ such that $g(f_1, \ldots, f_n) \in J$ for all $g \in I$ and $\varphi(\overline{g}) = \overline{g(f_1, \ldots, f_n)}$ for all $\overline{g} \in R[x_1, \ldots, x_n]/I$.
 - (c) There is an R-algebra homomorphism $\psi : R[x_1, \dots, x_n] \to R[y_1, \dots, y_m]$ such that $\psi(I) \subseteq J$ and $\varphi(\overline{g}) = \overline{\psi(g)}$.

Note, a. means: we may uniquely define an R-algebra homomorphism on $R[x_1, \ldots, x_n]$ by just specifying the images of the x_i !

Exercise 5: Let R be a ring and $I, J_1, \ldots, J_n \subseteq R$. Show that:

- a. $I : (\sum_{i=1}^{n} J_i) = \bigcap_{i=1}^{n} (I : J_i).$
- b. $(\bigcap_{i=1}^{n} J_i) : I = \bigcap_{i=1}^{n} (J_i : I).$
- c. $\sqrt{J_1 \cap \ldots \cap J_n} = \sqrt{J_1} \cap \ldots \cap \sqrt{J_n}$.
- d. $\sqrt{J_1 + \ldots + J_n} \supseteq \sqrt{J_1} + \ldots + \sqrt{J_n}$.

Exercise 6: Let R be a ring and $f = \sum_{n=0}^{\infty} a_n x^n \in R[[x]]$ a formal power series over R. Show:

- a. f is a *unit* if and only if a_0 is a unit in R.
- b. What are the units in K[[x]] if K is a field?
- c. x is not a zero-divisor in R[[x]].
- d. If f is nilpotent, then a_n is nilpotent for all n. Is the converse true?

Hint for a., consider first the case $a_0 = 1$ and recall that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$.

In-Class Exercise 4: Consider the ring extension

$$\iota: \mathbb{Z} \longrightarrow \mathbb{Z}_7 = \left\{ \frac{z}{7^n} \mid n \ge 0, z \in \mathbb{Z} \right\} : z \mapsto z$$

and the ideals $I = \langle 84 \rangle \lhd \mathbb{Z}$ and $J = \langle 15 \rangle \lhd \mathbb{Z}_7$. Give generators I^e , I^{ec} , J^c , and J^{ce} .

In-Class Exercise 5: Does the following equality of ideals hold in the polynomial ring $\mathbb{C}[x, y]$:

$$\langle x^3 - x^2, x^2y - x^2, xy - y, y^2 - y \rangle = \langle x^2, y \rangle \cap \langle x - 1, y - 1 \rangle.$$

In-Class Exercise 6: What are the prime ideals in $\mathbb{C}[x,y]$ containing the ideal $I=\langle x^2y-x^2\rangle.$