Commutative Algebra

Due date: Friday, 13/11/2009, 14h00
Exercise 8: Let R be a ring such that for every $r \in R$ there is an $n=n(r)>1$ such that $r^{n}=r$.
a. Show that $\operatorname{Spec}(R)=\mathfrak{m}-\operatorname{Spec}(R)$.
b. Give an example of such a ring R which is not a field.

Exercise 9: Let $R \neq 0$ be a ring. Show that $\operatorname{Spec}(R)$ has a minimal element with respect to inclusion, i. e. $\exists P_{0} \in \operatorname{Spec}(R): \forall P \in \operatorname{Spec}(R)$ with $P \subseteq P_{0}$ we have $P=P_{0}$. Hint, use Zorn's Lemma with a suitable partial ordering on the set of all prime ideals.

Exercise 10: Let R be a ring and $N(R)$ its nil-radical. Show the following are equivalent:
a. $R / N(R)$ is a field.
b. $|\operatorname{Spec}(R)|=1$.
c. Every element of R is either a unit or nilpotent.

Give an example for such a ring which is not a field.
Exercise 11: Let $d \in \mathbb{Z}$ be a squarefree, negative integer. Show that $\mathbb{Z}[\sqrt{d}]$ is a UFD if and only if $d \in\{-1,-2\}$.

Hint, show that 2 is not a prime, but if $d<-2$ it is irreducible. For the "non-primeness" note that either $2 \mid d$ or $2 \mid d-1$, and note that in $\mathbb{Q}[\sqrt{d}]$ every element is uniquely expressible as $a+b \cdot \sqrt{d}$ - why?

In-Class Exercise 7:

a. Find a prime factorisation of 11 in $\mathbb{Z}[\sqrt{-2}]$.
(Use known results for elementary number theory!)
b. $9=3 \cdot 3=(1+2 \cdot \sqrt{-2}) \cdot(1-2 \cdot \sqrt{-2})$.

How does this fit with the result from Exercise 11?
In-Class Exercise 8: Which of the following ideals I in $\mathbb{Z}[x]$ is a maximal ideal?
a. $I=\left\langle 5,11 x^{3}+x-1\right\rangle$.
b. $I=\left\langle 4, x^{2}+x+1, x^{2}+x-1\right\rangle$.

How many elements does the corresponding field $\mathbb{Z}[x] / I$ have?
In-Class Exercise 9: Let K be any field. Show that $x^{2}-y^{3} \in K[x, y]$ is irreducible.

