Commutative Algebra

Due date: Friday, 27/11/2009, 14h00

Exercise 16: Let R be a ring, M a finitely generated R-module and $\varphi \in Hom_R(M, \mathbb{R}^n)$ surjective. Show that $ker(\varphi)$ is finitely generated as an R-module.

Hint, note that the short exact sequence $0 \to ker(\phi) \to M \to R^n \to 0$ is split exact.

Exercise 17: Let R be a ring and P an R-module. Show that the following statements are equivalent:

a. If $\phi \in Hom_R(M,N)$ is surjective and $\psi \in Hom_R(P,N)$, then there is a $\alpha \in Hom_R(P,M)$ such that $\phi \circ \alpha = \psi$, i.e.

$$\begin{array}{cccc}
& P \\
& \downarrow & \psi \\
M & \xrightarrow{\varphi} & N
\end{array}$$

- b. If $\phi \in Hom_R(M,N)$ is surjective, then $\phi_*: Hom_R(P,M) \to Hom_R(P,N): \alpha \mapsto \phi \circ \alpha$ is surjective.
- c. If $0 \to M \to N \to P \to 0$ is exact, then it is split exact.
- d. There is free module F and a submodule $M \leq F$ such that $P \oplus M \cong F$.

Exercise 18: Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of R-modules. Show, if M' and M" are finitely generated, then so is M.

Hint, you can do the proof using the Snake Lemma and the fact that a free module is projective. Alternatively you can simply write down a set of generators.

Exercise 19: Let R be a ring, M, M' and M" R-modules, $\phi \in \text{Hom}_R(M', M)$ and $\psi \in \text{Hom}_R(M, M'')$.

Show that

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \longrightarrow 0$$

is exact if and only if for all R-modules P the sequence

$$0 \longrightarrow Hom_R(M'',P) \xrightarrow{\psi^*} Hom_R(M,P) \xrightarrow{\phi^*} Hom_R(M',P)$$

is exact.

In-Class Exercise 12: Let R = K[x,y] and $I = \langle x,y \rangle$. Find R-linear maps such that the following sequence is an exact sequence of R-linear maps:

$$0 \longrightarrow R \longrightarrow R^2 \longrightarrow R \longrightarrow R/I \longrightarrow 0.$$