Fachbereich Mathematik Thomas Markwig Winter Semester 2009/10, Set 6 Simon Hampe

Commutative Algebra

Due date: Friday, 04/12/2009, 14h00

Exercise 20: Suppose that (R, m) is local ring and that $M \oplus R^m \cong R^n$ for some $n \ge m$. Show that then $M \cong R^{n-m}$.

Exercise 21: Let R' be an R-algebra and M and N be R-modules. Show that there is an isomorphism of R'-modules

$$\Phi: \left(\mathsf{M} \otimes_{\mathsf{R}} \mathsf{N} \right) \otimes_{\mathsf{R}} \mathsf{R}' \longrightarrow \left(\mathsf{M} \otimes_{\mathsf{R}} \mathsf{R}' \right) \otimes_{\mathsf{R}'} \left(\mathsf{N} \otimes_{\mathsf{R}} \mathsf{R}' \right) : \mathfrak{m} \otimes \mathfrak{n} \otimes \mathfrak{r}' \mapsto (\mathfrak{m} \otimes \mathfrak{r}') \otimes (\mathfrak{n} \otimes 1).$$

 $\text{Recall that } M \otimes_R R' \text{ is an } R'\text{-module via } r' \cdot (m \otimes s') := m \otimes (r' \cdot s').$

Exercise 22: Let (R, \mathfrak{m}) be a local ring, and M and N be finitely generated R-modules. Show that $M \otimes N = 0$ if and only if M = 0 or N = 0.

Hint, use Exercise 21 and Nakayama's Lemma.

Exercise 23: Let R be a ring, M and N be R-modules, and suppose $N = \langle n_{\lambda} | \lambda \in \Lambda \rangle$. Show:

- a. $M \otimes_R N = \left\{ \sum_{\lambda \in \Lambda} \mathfrak{m}_{\lambda} \otimes \mathfrak{n}_{\lambda} \mid \mathfrak{m}_{\lambda} \in M \text{ and only finitely many } \mathfrak{m}_{\lambda} \neq 0 \right\}.$
- b. Let $x = \sum_{\lambda \in \Lambda} \mathfrak{m}_{\lambda} \otimes \mathfrak{n}_{\lambda} \in M \otimes_{R} N$ with $\mathfrak{m}_{\lambda} \in M$ and only finitely many $\mathfrak{m}_{\lambda} \neq 0$.

Then x = 0 if and only if there exist $m'_{\theta} \in M$ and $a_{\lambda,\theta} \in R$, $\theta \in \Theta$ some index set, such that

$$m_{\lambda} = \sum_{\theta \in \Theta} a_{\lambda,\theta} \cdot m_{\theta}' \quad \text{for all} \quad \lambda \in \Lambda$$

and

$$\sum_{\lambda\in\Lambda}a_{\lambda,\theta}\cdot n_{\lambda}=0\quad\text{for all}\quad\theta\in\Theta.$$

Hint, for part b. consider first the case that N is free in the $(n_{\lambda} \mid \lambda \in \Lambda)$ and show that in that case actually all m_{λ} are zero. Then consider a free presentation $\bigoplus_{\theta \in \Theta} R \to \bigoplus_{\lambda \in \Lambda} R \to N \to 0$ of N and tensorize this with M.

In-Class Exercise 13:

- a. Consider the Z-modules $M = \mathbb{Z}/2\mathbb{Z}$ and $N = \mathbb{Z}/4\mathbb{Z}$. How many elements does $M \otimes_{\mathbb{Z}} N$ have? Is it isomorphic to a Z-module that you know?
- b. Consider the Z-module $M = \mathbb{Z}^3 \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$ and the Q-vector space $M \otimes_{\mathbb{Z}} Q$. What is its dimension?

In-Class Exercise 14: Let K be a field. Is the K-vector space $K[x] \otimes_K K[y]$ isomorphic to a K-vector space that you know very well? Can you define a multiplication on the tensor product, such that it becomes a K-algebra that you know?