Fachbereich Mathematik Thomas Markwig Winter Semester 2011/12, Set 0 Christian Eder

Commutative Algebra

In-Class Exercise 1: We call an ideal I in the polynomial ring $K[\underline{x}] = K[x_1, ..., x_n]$ a *monomial ideal* if I is generated by (possibly infinitely many) monomials. Given two monomials \underline{x}^{α} and \underline{x}^{β} we say that \underline{x}^{α} *divides* \underline{x}^{β} if there is a monomial \underline{x}^{γ} such that $\underline{x}^{\alpha} \cdot \underline{x}^{\gamma} = \underline{x}^{\beta}$, i.e. $\alpha_i \leq \beta_i$ for all i = 1, ..., n. And we define the *least common multiple* of \underline{x}^{α} and \underline{x}^{β} in the obvious way as

$$\operatorname{lcm}\left(\underline{x}^{\alpha},\underline{x}^{\beta}\right) = x_{1}^{\max\{\alpha_{1},\beta_{1}\}} \cdots x_{n}^{\max\{\alpha_{n},\beta_{n}\}},$$

i.e. it is the monomial of lowest degree which is divisible by both monomials.

- a. Show that for an ideal I the following are equivalent:
 - (1) I is a monomial ideal.
 - (2) For any $f \in I$ also all monomials occuring in f belong to I.
 - (3) There is a generating set B of I such that for any $f \in B$ all monomials of f belong to I.
- b. If $I = \langle \underline{x}^{\alpha} \mid \alpha \in \Lambda \rangle$ and $\underline{x}^{\beta} \in I$ then there is an $\alpha \in \Lambda$ such that \underline{x}^{α} divides \underline{x}^{β} .
- c. Let $I = \langle \underline{x}^{\alpha} \mid \alpha \in \Lambda \rangle$ and $J = \langle \underline{x}^{\beta} \mid \beta \in \Lambda' \rangle$ be two monomial ideals in K[x]. Show that

$$I \cap J = \left\langle \operatorname{lcm}\left(\underline{x}^{\alpha}, \underline{x}^{\beta}\right) \ \middle| \ \alpha \in \Lambda, \beta \in \Lambda' \right\rangle$$

and

$$\mathrm{I}: \langle \underline{x}^{\gamma} \rangle = \left\langle \frac{\mathrm{lcm}(\underline{x}^{\alpha}, \underline{x}^{\gamma})}{\underline{x}^{\gamma}} \mid \alpha \in \Lambda \right\rangle.$$

Hint for part c., show first that the two ideals are monomial ideals.

In-Class Exercise 2: We will now introduce some basic commands for SINGULAR. In SINGULAR we have can work with two types of rings that we have introduced so far in the lecture, polynomial rings $K[x_1, ..., x_n]$ and power series rings $K[[x_1, ..., x_n]]$. The polynomial ring $\mathbb{Q}[x, y, z]$ is defined in SINGULAR as:

Here, 0 stands for the characteristic of \mathbb{Q} and dp says that we are working with a **p**olynomial ring.

The power series ring $\mathbb{Z}/5\mathbb{Z}[[x_1, \ldots, x_4]]$ is defined in SINGULAR as:

ring r=5,(x(1..4)),ds;

Here, 5 stands for the characteristic of $\mathbb{Z}/5\mathbb{Z}$ and dp says that we are working with a power **s**eries ring — actually this is not quite true, but morally it is, and we need the notion of *localisation* to be more precise.

Once we have fixed a ring we can define polynomials and ideals and perform operations with them:

```
LIB "all.lib";
                    // load libraries needed e.g. for the radical
ring r=0,(x,y,z),dp;
poly f=x^3*y+5*z^2;
poly g=3x2y-xz2; // this is short hand for 3*x^2*y-x*z^2
ideal I=f,g,x2y;
ideal J=x+y;
I*J;
                   // the product of I and J
intersect(I,J);
                   // intersect the two ideals
quotient(I,J);
                   // compute the ideal quotient
radical(I);
                   // compute the radical of I
I=std(I);
                   // replace the generators of I by better ones
reduce(f,I);
                   // test if f belongs to I
                   // test if J is contained in I
reduce(J,I);
```

Consider the ideal $I = \langle x^2y^5, x^6, y^2 \rangle$ and $J = \langle x^2y, xy^4 \rangle$. Compute the following ideals with SINGULAR:

- a. $I \cap J$.
- b. I · J.
- c. I: $\langle x^3y^6 \rangle$.
- d. \sqrt{I} .
- e. Test if the polynomial $x^7 + xy^8$ is in I.

Verify the results without SINGULAR.

In-Class Exercise 3: Welche der folgenden Ideale sind monomiale Ideale?

a.
$$I = \langle x^2y - y^3, x^3 \rangle \lhd \mathbb{Q}[x, y, z].$$

b. $I = \langle x^4 - x^2y^2 + y^4, 2x^3 - xy^2, 2y^3 - x^2y \rangle \lhd \mathbb{Q}[x, y, z]$
c. $I = \langle x12y7 + x9y + xyz3 + yz3, x8 - xyz, yz3, x8 - yz3, x12y7 \rangle \lhd \mathbb{Q}[x, y, z].$