Commutative Algebra

Due date: Monday, 14/11/2011, 10h00

Exercise 13:

a. Let $R=\mathbb{R}[[x]]$ be the ring of formal power series over the real numbers. Consider the R-linear map $\varphi: R^{3} \rightarrow R^{2}: m \mapsto A \cdot m$ where

$$
A=\left(\begin{array}{ccc}
1+x^{4}-x^{7}+3 x^{100} & \cos (x) & 2-\exp (x) \\
x^{4}-5 x^{8} & \sum_{i=0}^{\infty}\left(5 x+x^{2}\right)^{i} & 0
\end{array}\right) \in \operatorname{Mat}(2 \times 3, R) .
$$

Is φ an epimorphism?
b. Let $p \in \mathbb{Z}$ be a prime number. Consider the subring $R=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, p \quad \chi b\right\} \leq \mathbb{Q}$ of the rational numbers, and consider $M=\mathbb{Q}$ as an R -module.
(1) Show that R is local with maximal ideal $\mathfrak{m}=\left\{\frac{a}{b}|a, b \in \mathbb{Z}, p \nmid b, p| a\right\}$.
(2) $\mathfrak{m} \cdot M=M$, but $M \neq 0$.
(3) Find a set of generators for M.

Exercise 14: Let R be a ring and P an R-module. Show that the following statements are equivalent:
a. If $\varphi \in \operatorname{Hom}_{R}(M, N)$ is surjective and $\psi \in \operatorname{Hom}_{R}(P, N)$, then there is a $\alpha \in$ $\operatorname{Hom}_{\mathrm{R}}(\mathrm{P}, \mathrm{M})$ such that $\varphi \circ \alpha=\psi$, i.e.

b. If $\varphi \in \operatorname{Hom}_{R}(M, N)$ is surjective, then $\varphi_{*}: \operatorname{Hom}_{R}(P, M) \rightarrow \operatorname{Hom}_{R}(P, N): \alpha \mapsto \varphi \circ \alpha$ is surjective.
c. If $0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0$ is exact, then it is split exact.
d. There is free module F and a submodule $M \leq F$ such that $P \oplus M \cong F$.

Exercise 15: Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be an exact sequence of R-modules. Show, if M^{\prime} and $M^{\prime \prime}$ are finitely generated, then so is M.

Hint, you can do the proof using the Snake Lemma and the fact that a free module is projective. Alternatively you can simply write down a set of generators.

Exercise 16: Let R be a ring, M, M^{\prime} and $M^{\prime \prime}$ R-modules, $\varphi \in \operatorname{Hom}_{R}\left(M^{\prime}, M\right)$ and $\psi \in \operatorname{Hom}_{R}\left(M, M^{\prime \prime}\right)$.
Show that

$$
M^{\prime} \xrightarrow{\varphi} M \xrightarrow{\psi} M^{\prime \prime} \longrightarrow 0
$$

is exact if and only if for all R-modules P the sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime \prime}, P\right) \xrightarrow{\psi^{*}} \operatorname{Hom}_{R}(M, P) \xrightarrow{\varphi^{*}} \operatorname{Hom}_{R}\left(M^{\prime}, P\right)
$$

is exact.

In-Class Exercise 9: Consider $R=\mathbb{R}[x, y, z]$ and $M=\langle x y, x z, y z\rangle$. Find a polynomial $F \in R[t]$ such that $F(\varphi)=0$ where φ is the restriction to M of the map

$$
R \longrightarrow R: f \mapsto f \cdot(x+y+z)
$$

In-Class Exercise 10: Let $R=K[x, y]$ and $I=\langle x, y\rangle$. Find R-linear maps such that the following sequence is an exact sequence of R-linear maps:

$$
0 \longrightarrow \mathrm{R} \longrightarrow \mathrm{R}^{2} \longrightarrow \mathrm{R} \longrightarrow \mathrm{R} / \mathrm{I} \longrightarrow 0
$$

