Commutative Algebra

Due date: Monday, 21/11/2011, 10h00

Exercise 17: Suppose that (R, \mathfrak{m}) is local ring and that $M \oplus R^{\mathfrak{m}} \cong R^{\mathfrak{n}}$ for some $\mathfrak{n} \geq \mathfrak{m}$. Show that then $M \cong R^{\mathfrak{n}-\mathfrak{m}}$.

Exercise 18: Let R' be an R-algebra and M and N be R-modules. Show that there is an isomorphism of R'-modules

$$\Phi: \left(M \otimes_R N\right) \otimes_R R' \longrightarrow \left(M \otimes_R R'\right) \otimes_{R'} \left(N \otimes_R R'\right) : m \otimes n \otimes r' \mapsto (m \otimes r') \otimes (n \otimes 1).$$

Recall that $M \otimes_R R'$ is an R'-module via $r' \cdot (m \otimes s') := m \otimes (r' \cdot s')$.

Exercise 19: Let (R, \mathfrak{m}) be a local ring, and M and N be finitely generated R-modules. Show that $M \otimes N = 0$ if and only if M = 0 or N = 0.

Hint, use Exercise 18 and Nakayama's Lemma.

Exercise 20: Let R be a ring, M and N be R-modules, and suppose $N = \langle n_{\lambda} | \lambda \in \Lambda \rangle$. Show:

- a. $M \otimes_R N = \big\{ \sum_{\lambda \in \Lambda} m_\lambda \otimes n_\lambda \ \big| \ m_\lambda \in M \ \text{and only finitely many} \ m_\lambda \neq 0 \big\}.$
- b. Let $x=\sum_{\lambda\in\Lambda}m_\lambda\otimes n_\lambda\in M\otimes_R N$ with $m_\lambda\in M$ and only finitely many $m_\lambda\neq 0$. Then x=0 if and only if there exist $m_\theta'\in M$ and $a_{\lambda,\theta}\in R$, $\theta\in\Theta$ some index set, such that

$$\mathfrak{m}_{\lambda} = \sum_{\theta \in \Theta} \mathfrak{a}_{\lambda,\theta} \cdot \mathfrak{m}'_{\theta} \quad \text{for all} \quad \lambda \in \Lambda$$

and

$$\sum_{\lambda \in \Lambda} \alpha_{\lambda,\theta} \cdot n_\lambda = 0 \quad \text{ for all } \quad \theta \in \Theta.$$

Hint, for part b. consider first the case that N is free in the $(n_{\lambda} \mid \lambda \in \Lambda)$ and show that in that case actually all m_{λ} are zero. Then consider a free presentation $\bigoplus_{\theta \in \Theta} R \to \bigoplus_{\lambda \in \Lambda} R \to N \to 0$ of N and tensorize this with M.

In-Class Exercise 11:

- a. Consider the \mathbb{Z} -modules $M = \mathbb{Z}/2\mathbb{Z}$ and $N = \mathbb{Z}/4\mathbb{Z}$. How many elements does $M \otimes_{\mathbb{Z}} N$ have? Is it isomorphic to a \mathbb{Z} -module that you know?
- b. Consider the \mathbb{Z} -module $M=\mathbb{Z}^3\oplus\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/5\mathbb{Z}$ and the \mathbb{Q} -vector space $M\otimes_\mathbb{Z}\mathbb{Q}$. What is its dimension?

In-Class Exercise 12: Let K be a field. Is the K-vector space $K[x] \otimes_K K[y]$ isomorphic to a K-vector space that you know very well? Can you define a multiplication on the tensor product, such that it becomes a K-algebra that you know?