Fachbereich Mathematik Thomas Markwig Winter Semester 2011/12, Set 6 Christian Eder

Commutative Algebra

Due date: Monday, 28/11/2011, 10h00

Exercise 21: Let $S \subseteq R$ be a multiplicatively closed subset, and consider the ring extension $i: R \to S^{-1}R: r \mapsto \frac{r}{1}$. Show that

 $\left\{ P \in \operatorname{\mathbf{Spec}}(R) \ \big| \ S \cap P = \emptyset \right\} \longrightarrow \operatorname{\mathbf{Spec}}\left(S^{-1}R\right) : P \mapsto P^e = S^{-1}P$

is bijective with inverse

 $\operatorname{Spec}\left(S^{-1}R\right) \longrightarrow \left\{P \in \operatorname{Spec}(R) \ \middle| \ S \cap P = \emptyset\right\} : Q \mapsto Q^{c} = \mathfrak{i}^{-1}(Q).$

In particular, for prime ideals $P \in \text{Spec}(R)$ we have $(P^e)^c = P$.

Exercise 22:

- a. Let K be a field, $R = K[x, y, z]/\langle xz, yz \rangle$ and $P = \langle x, y, z-1 \rangle \trianglelefteq R$. Show $R_P \cong K[z]_{\langle z-1 \rangle}$.
- b. Let R be a ring, $f \in R$ a non-zero-divisor. Show $R_f \cong R[x]/\langle fx 1 \rangle$.

Exercise 23: Let R be a ring and $\mathcal{N}(R)$ its nilradical. Show:

- a. If $S \subseteq R$ multiplicatively closed, then $\mathcal{N}(S^{-1}R) = S^{-1}\mathcal{N}(R)$.
- b. A ring is called *reduced* if it has no nilpotent elements except 0. Show that "being reduced" is a local property, i.e. the following are equivalent:
 - (1) R is reduced.
 - (2) R_P is reduced for each $P \in \text{Spec}(R)$.
 - (3) R_m is reduced for each $m \lhd \cdot R$.
- c. Show that "being flat" is a local property, i.e. if M is an R-module, then the following are equivalent:
 - (1) M is a flat R-module.
 - (2) M_P is a flat R_P module for each $P \in \text{Spec}(R)$.
 - (3) $M_{\mathfrak{m}}$ is a flat $R_{\mathfrak{m}}$ module for each $\mathfrak{m} \lhd \cdot R$.

Hint for part c., use Exercise 21 and note that any $R_{P}\mbox{-module}\ N$ is also an R-module and that $N_{P}=N.$

Exercise 24: Let $I := \langle 2, 1 + \sqrt{-5} \rangle \triangleleft \mathbb{Z}[\sqrt{-5}]$. Show that I as an R-module is projective, but not free.

Hint, note that $2 \in I \cdot I$. Use this to show that $I \neq \langle x \rangle$ for any x, while for any prime P containing I we have I_P is generated by $1 + \sqrt{-5}$. For the last statement use Nakayama's Lemma in a sensible way!

In-Class Exercise 13: Let R = K[x, y] and $P = K[x, y, z]/\langle xz - x, yz - y - z + 1 \rangle$. Is P a flat R-module?

In-Class Exercise 14: Let $\mathfrak{m} = \langle x, y \rangle \lhd K[x, y]$. Localize the ring R and the module P in In-Class Exercise 13 at \mathfrak{m} . Is the resulting module $P_{\mathfrak{m}}$ a flat $R_{\mathfrak{m}}$ -module?